

Intel[®] Optane[™] DC Persistent Memory Module (DCPMM) - DSM Interface

Revision V1.8

October, 2018

The following changes make up the publically released DSM V1.8 specification available on http://pmem.io/documents/:

- Get SMART Health Info:
 - Renamed Spare Blocks Remaining field and Validity bit to Percentage Remaining
 - O Added Health Status Reason field and new validity bit
 - Percentage Used has been deprecated and renamed Reserved
 - Added notes to DSC and LSS that these indicators are both controlled by the LSS latch enable logic
 - O Add DCPMM Specific SMART Data using new Table 3-3
 - Rename Vendor Specific Data to DCPMM Specific Data
- Get SMART Threshold
- Set SMART Threshold
 - Renamed Spare Blocks Remaining field to Percentage Remaining
- NVDIMM Security Management
 - Addition of Master Passphrase support to match FIS 1.13
 - Addition missing return status 01 Failure Function Not Supported returned for most security commands if not in correct state
 - Theory of Operation Updated Application In-band Get Security State Sequence diagram with Master Passphrase additions
 - Get Security State
 - Updated both flows for Security Theory of Operation section. Note the updated GetSecurityState DSM status checking. These are clarifications only and not a logic change
 - Add new return values to report Master Passphrase Enabled and Master Passphrase Limit Expired to match FIS 1.13
 - Added Extended Security State field to allow backwards compatibility with the V1.7 DSM spec
 - Set Master Passphrase
 - New DSM to match FIS 1.13 addition of Master Passphrase feature
 - Secure Erase NVDIMM
 - Updated responsibilities to better explain invalidating CPU caches
 - Renamed Secure Erase NVDIMM w User Passphrase
 - Secure Erase NVDIMM w Master Passphrase
 - New command to avoid changes to existing Secure Erase feature
 - Unlock Unit
 - Added missing responsibility to invalidate CPU caches after an Unlock Unit has completed

Notices

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© 2015-2018 Intel Corporation.

Contents

Contents

1 1.1 1.2 1.3	Introduction 5 Document Scope 5 Related Documents 5 Terminology 5							
2 3 3.1	_DSM In _DSM In	nterface for NVDIMM ACPI0012 Root Device	6 7 10					
	3.1.2	Get SMART Threshold (Function Index 2)	15					
	3.1.3	Set SMART Threshold (Function Index 17)	17					
3.2	Commar 3.2.1	nd Effect Log Get Command Effect Log Info (Function Index 7)						
	3.2.2	Get Command Effect Log (Function Index 8)	20					
3.3 3.4 3.5 3.6	Enable L Get Sup	rough Command (Function Index 9) Latch System Shutdown Status (Function Index 10) ported Modes (Function Index 11) 1 FW Download Get FW Info (Function Index 12)	23 24 25					
	3.6.2	Start FW Update (Function Index 13)	27					
	3.6.3	Send FW Update Data (Function Index 14)	29					
	3.6.4	Finish FW Update (Function Index 15)	31					
	3.6.5	Query Finish FW Update Status (Function Index 16)	33					
3.7 3.8		rror (Function Index 18) 1 Security Management Theory Of Operation	38					
	3.8.2	Get Security State (Function Index 19)	41					
	3.8.3	Set Passphrase (Function Index 20)	44					
	3.8.4	Disable Passphrase (Function Index 21)	45					
	3.8.5	Unlock Unit (Function Index 22)	46					
	3.8.6	Freeze Lock (Function Index 23)	47					

	3.8.7	Secure Erase NVDIMM w User Passphrase (Function Index 24)	48
	3.8.8	Overwrite NVDIMM (Function Index 25)	50
	3.8.9	Query Overwrite NVDIMM Status (Function Index 26)	52
	3.8.10	Set Master Passphrase (Function Index 27)	54
	3.8.11	Secure Erase NVDIMM w Master Passphrase (Function Index 28)	56
3.9	Depreca	ted Functions	. 58
2.2	3.9.1	Get Block NVDIMM Flags (Function Index 3)	
	3.9.2	Get Namespace Label Size (Function Index 4)	59
	3.9.3	Get Namespace Label Data (Function Index 5)	60
	3.9.4	Set Namespace Label Data (Function Index 6)	61

1 Introduction

1.1 Document Scope

This document is targeted to writers of BIOS and OS drivers for NVDIMMs whose design adheres to the NFIT Tables in the ACPI V6.2 specification. This document specifically discusses the NVDIMM Device Specific Method (_DSM).

1.2 Related Documents

The related documents are:

- ACPI Specification Version 6.0, 6.1 & 6.2, 6.2 Errata A (http://www.uefi.org/specifications)
- UEFI 2.7, 2.7 Errata A NVDIMM Label Protocol, UEFI 2.7 NVDIMM BTT Layout (http://www.uefi.org/specifications)
- This DSM Specification (http://pmem.io/documents)

1.3 Terminology

Refer to Table 1-1 for definitions of terms used in this document.

Table 1-1 – Terminology

Term	Description
Intel® Optane™ DC Persistent Memory Module or DCPMM or NVDIMM	The non-volatile DDR DIMM form factor byte addressable PMEM. Also referred to throughout this specification as the NVDIMM or DCPMM.
NFIT	The NVDIMM Firmware Interface Table defines the ACPI 6.2 specified information created by the BIOS to inform the OS about NVDIMMs in the system.
NVDIMM	Non-volatile memory in a DIMM form factor. <u>See DCPMM above.</u>
NVDIMM Namespace Label	Labels, stored at a known location on NVDIMMs, which define the DIMM's contribution to NVDIMM Namespaces. This is a software mechanism; the DIMM itself just sees the labels as part of the overall data stored on the DIMM. See the ACPI 6.2 NVDIMM Label additions and the UEFI 2.7 NVDIMM Label Protocol additions to describe this in more detail.
NVDIMM Namespace	Similar to an NVMe Namespace or a Logical Unit (LUN) on a SCSI disk, this is a software mechanism for managing ranges of persistence on NVDIMMs. See the ACPI 6.2 NVDIMM Label additions, and the UEFI 2.7 NVDIMM Label Protocol additions to describe this in more detail.
Persistent Memory	Byte-addressable memory that retains its contents after power loss.
SPA	System Physical Address. A physical address on the host operating system.

2 _DSM Interface for NVDIMM ACPI0012 Root Device

All Root ACPI0012 scoped _DSMs and NVDIMM layout / Label interfaces are now found in the following specifications and have been removed from this document, which will now only document the Intel NVDIMM specific _DSMs.

Please see:

ACPI Specification V6.0 – Initial NVDIMM NFIT additions

ACPI Specification V6.1 – Addition of Common ARS _DSMs, Clear Uncorrectable Error _DSM

ACPI Specification V6.2 – Addition of NVDIMM Label API, ARS Error Injection DSMs

ACPI Specification V6.2 Errata A – Addition of RAS Capabilities structure as a new NFIT structure

UEFI Specification V2.7 – See additions of NVDIMM Label Protocol and BTT Layout UEFI Specification V2.7 Errata A – Small fixes to the Label Protocol that remove inconsistencies with existing implementations

3 _DSM Interface for the NVDIMM Device

Platforms that have the _DSM interface implemented, as outlined in this section, can support a NVDIMM region with Region Format Interface Code (RFIC) of 0x0201 or 0x0301.

Note that the _DSM methods defined in this section are required to be implemented under NVDIMM devices that are child devices of the NVDIMM Root Device associated with _HID of ACPI0012 in ACPI name space hierarchy.

The following tables outlines the required Arg1, Arg2 parameters that are to be utilized for this version of the specification. The platform shall support the Arg1 - Revision Id = 1 and Arg1 - Revision Id = 2 Function Indexes simultaneously as outlined below. No other Arg1 - Revision Id values are supported at this time.

Arg0 - UUID - 4309AC30-0D11-11E4-9191-0800200C9A66

Table 3-A Supported Function Index for Arg1 - Revision Id = 1

Arg1 - Revision Id	Arg2 – Function Index	_DSM Function Name
1	0	Query implemented commands per ACPI Specification
		(returns the list below based on Arg1 - Revision Id = 1).
	1	Get SMART and Health Info
	2	Get SMART Threshold
	3	Get Block NVDIMM Flags
	4	Deprecated - Get Namespace Label Data Size
	5	Deprecated - Get Namespace Label Data
	6	Deprecated - Set Namespace Label Data
	7	Get Command Effect Log Info
	8	Get Command Effect Log
	9	Pass-Through Command
	10	Enable Latch System Shutdown Status

Table 3-B Supported Function Index for Arg1 - Revision Id = 2

Arg1 - Revision Id	Arg2 – Function Index	_DSM Function Name
2	0	Query implemented commands per ACPI Specification
		(returns the list below based on Arg1 - Revision Id = 2).
	1	Get SMART and Health Info
	2	Get SMART Threshold
	3	Deprecated - Get Block NVDIMM Flags
	4	Deprecated - Get Namespace Label Data Size
	5	Deprecated - Get Namespace Label Data
	6	Deprecated - Set Namespace Label Data
	7	Get Command Effect Log Info
	8	Get Command Effect Log
	9	Pass-Through Command
	10	Enable Latch System Shutdown Status
	11	Get Supported Modes
	12	Get FW Info
	13	Start FW Update
	14	Send FW Update Data
	15	Finish FW Update
	16	Query Finish FW Update Status
	17	Set SMART Threshold
	18	Inject Error
	19	Get Security State
	20	Set Passphrase
	21	Disable Passphrase
	22	Unlock Unit
	23	Freeze Lock
	24	Secure Erase NVDIMM <u>w User Passphrase</u>
	25	Overwrite NVDIMM
	26	Query Overwrite NVDIMM Status
	<u>27</u>	<u>Set Master Passphrase</u>
	<u>28</u>	Secure Erase NVDIMM w Master Passphrase

Arg3 – A package containing parameters for the function specified by the *UUID*, *Revision ID*, and *Function Index*. The layout of the package for each command along with the corresponding output are illustrated in the respective *Function Index* description sections. For DSM functions that take an input argument, Arg3 is a package containing a Buffer, list of bytes, values. For DSM functions that do not take an input parameter, Arg3 is an empty package. The output of all functions in the DSM is a Buffer with a list of bytes. The first four bytes provide Status and Extended Status for the DSM function. Depending on the status code, additional bytes may follow the status bytes. If status bytes signal an error condition, the additional bytes are not present, unless some additional information is explicitly defined for the particular error code. If status bytes signal success, all output bytes defined for the function are present.

The following table outlines the returned Status field common to all of the DSMs defined in this specification. The status adopts the following conventions for the _DSM function return status codes. This status can always be utilized for the status of each _DSM function, whether the specific status value is defined in the output buffer or not.

Table 3-C Supported _DSM Return Status Values

Return Status Value - Bytes[1-0]	Return Status Value - Description
0	Success
1	Failure - Function Not Supported
2	Failure - Non-Existing Memory Device
3	Failure - Invalid Input Parameters
4	Failure – HW Error
5	Failure – Retry Suggested - Command Timed Out, Other Command In Progress, Mailbox not Ready Typically an operation is executing and cannot be interrupted. Operations most likely to be executing are: ARS, Overwrite NVDIMM, and Finish FW Update. Software shall wait for those operations to complete utilizing Get ARS Status, Query Overwrite NVDIMM Status, or Query Finish FW Update Status before restarting an ARS, Overwrite NVDIMM, or FW Update sequence respectively.
6	Failure – Unknown Reason
7	Function Specific Error (details in Extended Status Field)
8	Failure – Retry Suggested - Out of Resources
9	Failure – HW Not Ready
10	Failure – Invalid Security State
11	Failure – Invalid Current Passphrase Supplied - Returned by the NVDIMM when the Current Passphrase does not match the saved passphrase. If the NVDIMM is also in the wrong security state, the Invalid Security State status is reported instead of this status.

3.1 SMART Health Monitoring & Alarms

3.1.1 Get SMART and Health Info (Function Index 1)

This command requests the device to return Smart and Health information for the requested device.

Function Input

None

Function Output

Table 3-1 Get SMART and Health Info - Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
Extended	2	2	Extended Status Field
Status			
Smart and	128	4	Output formatted as shown in Table 3-2.
Health Data			

Table 3-2 SMART and Health Data - Output Format

Field	Byte Length	Byte Offset	Description
	2084	• moct	
Validity Flags	4	0	Validity Flags – if the corresponding validation flag is not set in this field, it is indication to software that the corresponding field is not valid and must not be interpreted. Bit[0] – if set to 1, indicates that Health Status field is valid Bit[1] – if set to 1, indicates that Spare BlocksPercentage Remaining field is valid
			Bit[2] – Reserved, shall return 0.if set to 1, indicates that Percentage Used field is valid Bit[3] – if set to 1, indicates that Current NVDIMM Media Temperature field is valid
			Bit[4] – if set to 1, indicates that Current NVDIMM Controller Temperature field is valid Bit[5] – If set to 1, indicates that Latched Dirty Shutdown Count field is valid Bit[6] – If set to 1, indicates that the AIT DRAM Status field is valid Bit[7] – If set to 1, indicates that the Health Status Reason field is valid

	1	1	
			Bit[8 :7] – Reserved, shall return 0.
			Bit[9] – if set to 1, indicates that Alarm Trips field is valid
			Bit[10] – if set to 1, indicates that <u>Latched</u> Last Shutdown Status
			field is valid
			Bit[11] – if set to 1, indicates that Size of Vendor-specific SMART
			Data field is valid. If this field is not valid, the software will ignore
			the vendor-specific data fields.
			Bits[31:12] – Reserved, shall return 0.
Reserved	4	4	Shall return 0.
Health Status	1	8	Health Status (HS): Overall health summary. Normal health is
			indicated by all HS bits being clear. Only one bit will be set at a
			time.
			Bit[0] – if set to 1, indicates Non-Critical condition, maintenance
			required but no data loss detected
			Bit[1] – if set to 1, indicates Critical condition, features or
			performance degraded due to failures but no data loss detected
			Bit[2] – if set to 1, indicates fatal condition, data loss is detected or
			is imminent.
			Bit[7:3] - Reserved, shall return 0.
Spare	1	9	Spare BlocksPercentage Remaining: Remaining modules life as a
Blocks Percen			percentage value of factory expected life span. The value of 0
<u>tage</u>			means that the warranted life span of the device has been
Remaining			<u>reached.</u>
			Spare Capacity as % of factory configured space.
			Valid range 0 to 100.
			0 = All of the factory configured spare block capacity has been
			utilized
			100 = None of the factory configured spare block capacity has
			been utilized
Percentage	1	10	Reserved, shall return 0. Percentage Used: Device life span as
<u>Used</u> Reserve			percentage
<u>d</u>			Valid range 0 to 100.
			100 = the warranted life span of the device has been reached.
Alarm Trips	1	11	Alarm Trips: Bits to signify if values have tripped their respective
			alarm thresholds
			Bit[0] - Spare BlocksPercentage Remaining Trip - If set then the
			Spare BlocksPercentage Remaining value has gone below the pre-
			programmed threshold limit
			Bit[1] – NVDIMM Media Temperature Trip - If set then the
			NVDIMM Media temperature value has gone above the pre-
			programmed threshold limit
			Bit[2] – NVDIMM Controller Temperature Trip - If set then the
			NVDIMM Controller temperature value has gone above the pre-

			programmed threshold limit
			Bits[7:3] - Reserved, shall return 0.
Current	2	12	Current Media Temperature: Current temperature of the NVDIMM
NVDIMM			Media
Media			Bits[14:0] - Temperature in 0.0625 degree Celsius resolution.
Temperature			Bit[15] – Sign bit for temperature (1 = negative, 0 = positive)
Current	2	14	Current Controller Temperature: Current temperature of the
NVDIMM			NVDIMM Controller
Controller			Bits[14:0] - Temperature in 0.0625 degree Celsius resolution.
Temperature			Bit[15] – Sign bit for temperature (1 = negative, 0 = positive)
Dirty	4	16	Latched Dirty Shutdown Count (LDSC) – Number of times the
Shutdown			NVDIMM Last Shutdown Status (LSS) was non-zero, indicating a
Count			dirty shutdown. Incremented anytime Last Shutdown Status (LSS)
			!= 0 & Latch System Shutdown Status is set by host SW (via Enable
			Latch System Shutdown Status DSM) . Count wraps back to 0 at
			overflow. Only updated and valid when Latch System Shutdown
			Status is enabled on the NVDIMM via Enable Latch System
			Shutdown Status.
AIT DRAM	1	20	AIT DRAM Status
Status	•	20	00 – AIT DRAM is disabled
Status			01 – AIT DRAM is enabled
			of All bitalitis eliabled
			If the AIT DRAM is disabled, it will cause a performance
			degradation and will trigger a SMART Health Status change to
			critical state
Lloolth Ctotus	2	21	
Health Status	2	<u>21</u>	Health Status Reason: Provides additional reasons why the
Reason			current Health Status is Non-Critical, Critical, or Fatal:
			Bit[0] – 0% < Percentage Remaining <= 1%
			Bit[1] – Package Sparing has occurred
			Bit[2] – CAP Self-Test returns a Warning
			Bit[3] – Percentage Remaining == 0
			Bit[4] - Die Failure after Package Sparing (if available)
			Bit[5] – AIT DRAM state is disabled
			Bit[6] – CAP Self-Test Failed
			Bit[7] – Critical internal state failure
			Bit[15:8] - Reserved
Reserved	10 8	21 23	Shall return 0.
Last	1	31	<u>Latched</u> Last Shutdown Status (<u>L</u> LSS): status of last shutdown
Shutdown			00 – Clean shutdown
Status			All other Values – Not Clean Shutdown, indicates that there was

			either a platform or memory device-related failure occurred when	
			saving data targeted for this memory device. Dirty Shutdown	
			Count (DSC) above maintains a count of the number of times a	
			non-clean shutdown occurs.	
			Only updated and valid when Latch System Shutdown Status is	
			enabled on the NVDIMM via Enable Latch System Shutdown	
			Status.	
Size of	4	32	Size of Vendor-specific <u>SMART</u> Data <u>in bytes</u> . If set to 0, indicates	
Vendor <u>-s</u>			that there is no vendor - <u>Vendor-s</u> specific <u>SMART</u> <u>data-Data</u> that	
S pecific			follows. Otherwise, indicates size of the Vendor-specific SMART	
SMART Data			data Data that follows.	
Vendor <u>-s</u>	92	127-	Vendor-specific SMART Data. The contents of this byte array are	
S pecific		36	vendor specific based on the hardware installed.	
SMART Data				
			See Table 3-3 DCPMM Specific SMART Data , below, for the Intel [®]	
			Optane™ DC Persistent Memory Module (DCPMM) specific field	
			definitions	

The following table outlines the Intel DCPMM specific fields that are utilized with SMART Last Shutdown Status for both latched and unlatched usages. Please see the DCPMM specific FIS specification for details on the other vendor specific fields not outlined here.

Note: These vendor specific fields apply to the Intel® Optane™ DC Persistent Memory Module based products ONLY.

<u>Table 3-3 DCPMM Specific SMART Data - Output Format</u>

Field	Byte Length	Overall SMART payload Byte Offset	DCPMM Specific SMART Byte Offset	<u>Description</u>
Reserved	<u>24</u>	<u>36</u>	<u>0</u>	See FIS for specific values. May not read as 0.
Unlatched Dirty Shutdown Count	4	<u>60</u>	<u>24</u>	Unlatched Dirty Shutdown Count (UDSC) is the free running count of dirty shutdowns that have been detected by the NVDIMM. This count is not affected by the state of the LSS latch (controlled by the Latch System Shutdown Status command).
Latched Last Shutdown Status Details	1	<u>64</u>	28	Latched Last Shutdown Status Details shows the additional signals and state utilized by the NVDIMM when determining the final latched Last Shutdown Status and latched Dirty Shutdown Count. Multiple bits can be set. Bit[0] – When set to 1, PM ADR Command Received Bit[1] – When set to 1, PM S3 Received

				Bit[2] - When set to 1, PM S5 Received Bit[3] - When set to 1, DDRT Power Fail Command Received Bit[4] - When set to 1, PMIC 12V/DDRT 1.2V Power Loss Occurred Bit[5] - When set to 1, PM Warm Reset Received Bit[6] - When set to 1, Thermal Shutdown Received Bit[7] - When set to 1, Controller FW State Flush Completed
Reserved	<u>8</u>	<u>65</u>	<u>29</u>	See FIS for specific values. May not read as 0.
Latched Last Shutdown Status Extended Details	3	73	37	Latched Last Shutdown Status Extended Details shows additional signals and state utilized by the NVDIMM when determining the final Latched Last Shutdown Status (LLSS) and Latched Dirty Shutdown Count (LDSC). Multiple bits can be set. Bit[0] - When set to 1, Viral Interrupt Received Bit[1] - When set to 1, Surprise Clock Stop Received Bit[2] - When set to 1, Write Data Flush Complete Bit[3] - When set to 1, PM S4 Received Bit[4] - When set to 1, PM Idle Received Bit[5] - When set to 1, DDRT Surprise Reset Received
Reserved	2	<u>76</u>	<u>40</u>	Reserved. Read as 0.
Unlatched Last Shutdown Status Details	1	78	42	Unlatched Last Shutdown Status Details shows the additional signals and state utilized by the NVDIMM when determining the final Unlatched Dirty Shutdown Count. These details are not affected by the state of the LSS latch (controlled by the Latch System Shutdown Status command).
Unlatched Last Shutdown Status Extended Details	3	<u>79</u>	43	Unlatched Last Shutdown Status Extended Details shows additional signals and state utilized by the NVDIMM when determining the final Unlatched Dirty Shutdown Count. These details are not affected by the state of the LSS latch (controlled by the Latch System Shutdown Status command).
Reserved	46	<u>82</u>	<u>46</u>	See FIS for specific values. May not read as 0.

3.1.2 Get SMART Threshold (Function Index 2)

This command requests the device to return Smart Threshold values that have been programmed by the platform for the requested device.

Function Input

None

Function Output

Table 3-4 Get SMART Threshold – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
Extended	2	2	Extended Status Field
Status			
Smart	8	4	Output formatted as shown in Table 3-4.
Threshold			
Data			

Table 3-5 SMART Threshold Data - Output Format

Field	Byte Length	Byte Offset	Description	
Threshold Alarm Enable	2	0	Threshold Alarm Control – If a bit is set to 1, the specific alarm is enabled and the corresponding Alarm Trip bit in the SMART Health Status output payload will be set when a specific threshold outlined below has been reached. Bit[0] - Spare BlocksPercentage Remaining Threshold Alarm Enable Bit[1] – NVDIMM Media Temperature Threshold Alarm Enable Bit[2] – NVDIMM Controller Temperature Threshold Alarm Enable Bit[15:3] - Reserved, shall return 0	
Spare BlocksPercen tage Remaining Threshold	1	2	Spare BlocksPercentage Remaining Threshold: Remaining Spare Capacity as % of factory configured space. Valid range 0 to 100. If the Spare BlocksPercentage Remaining Threshold Alarm Enable bit is set and when the remaining spare block capacity goes below this threshold, the Spare BlocksPercentage Remaining Trip bit will be set in the SMART and Health Data structure defined in Table 3-2.	
NVDIMM Media Temperature Threshold	2	3	Media Temperature Threshold Bit[14:0] – Temperature in 0.0625 degree Celsius resolution. Bit[15] – Sign bit for temperature (1 = negative, 0 = positive) If the NVDIMM Media Temperature Threshold Alarm Valid bit is enabled and when the NVDIMM Media temperature goes above this value, the NVDIMM Media Temperature Trip bit will be set in the SMART and Health Data structure defined in Table 3-2.	
NVDIMM Controller Temperature Threshold	2	5	Controller Temperature Threshold Bit[14:0] - Temperature in 0.0625 degree Celsius resolution. Bit[15] - Sign bit for temperature (1 = negative, 0 = positive) If the NVDIMM Controller Temperature Threshold Alarm Valid bit is enabled and when the NVDIMM Controller temperature goes above this value, the NVDIMM Controller Temperature Trip bit will be set in the SMART and Health Data structure defined in Table 3-2.	
Reserved	1	7	Shall return 0.	

3.1.3 Set SMART Threshold (Function Index 17)

This command requests the device to simultaneously enable specific SMART Threshold Alarm Triggers and set the SMART Threshold Alarm Trigger values for the device. Parameter values are verified first before any enable/disable state or threshold values are updated.

Function Input

Table 3-6 Set SMART Threshold - Input Format

Field	Byte Length	Byte Offset	Description
Threshold Alarm Enable	2	0	Threshold Alarm Control - If a bit is set to 1, the specific alarm is enabled and the corresponding Alarm Trip bit in the SMART Health Status output payload will be set when a specific threshold outlined below has been reached. Bit[0] - Spare BlocksPercentage Remaining Threshold Alarm Enable Bit[1] - NVDIMM Media Temperature Threshold Alarm Enable Bit[2] - NVDIMM Controller Temperature Threshold Alarm Enable Bit[15:3] - Reserved, shall be 0
Spare BlocksPercen tage Remaining Threshold	1	2	Percentage Remaining Remaining Spare Capacity Alarm - A % of factory configured spare blocks. Values 0 & 100 are not valid and will result in an error. If the Spare BlocksPercentage Remaining Threshold Alarm Enable bit is set and when the spare block capacity goes below this threshold, the Spare BlocksPercentage Remaining Trip bit will be set in the SMART and Health Data structure defined in Table 3-2. This field is ignored if the Spare BlocksPercentage Remaining Threshold Alarm Enable bit above is cleared to 0.
NVDIMM Media Temperature Threshold	2	3	Media Temperature Alarm Bit[14:0] – Temperature in 0.0625 degree Celsius resolution. Bit[15] – Sign bit for temperature (1 = negative, 0 = positive) If the NVDIMM Media Temperature Threshold Alarm Valid-Enable bit is enabled and when the NVDIMM Media temperature goes above this value, the NVDIMM Media Temperature Trip bit will be set in the SMART and Health Data structure defined in Table 3-2. This field is ignored if the NVDIMM Media Temperature Threshold Alarm Enable bit above is cleared to 0.
NVDIMM Controller Temperature Threshold	2	5	Control Temperature Alarm Bit[14:0] - Temperature in 0.0625 degree Celsius resolution. Bit[15] - Sign bit for temperature (1 = negative, 0 = positive)

If the NVDIMM Controller Temperature Threshold Alarm Valid
Enable bit is enabled and when the NVDIMM Controller
temperature goes above this value, the NVDIMM Controller
Temperature Trip bit will be set in the SMART and Health Data
structure defined in Table 3-2.
This field is ignored if the NVDIMM Controller Temperature
Threshold Alarm Enable bit above is cleared to 0.

Function Output

Table 3-7 Set SMART Threshold – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			03 – Invalid Input Parameters
			Returned If any threshold value requested to be enabled is
			invalid. No changes are made to any previously set threshold
			enable/disable state and no changes are made to any
			previously set threshold values.
Extended	2	2	Extended Status Field
Status			

3.2 Command Effect Log

3.2.1 Get Command Effect Log Info (Function Index 7)

This command requests the device to return the Command Effect Log Information for the requested device.

Function Input

None

Function Output

Table 3-8 Get Command Effect Log Info – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
Extended Status	2	2	Extended Status Field
Max Command	4	4	In bytes,
Effect Log Data			Maximum size of the command effect log data buffer
Length			supported by the device

3.2.2 Get Command Effect Log (Function Index 8)

This command requests the device to return the Command Effect Log associated with the requested device. If the OpCode is not in the Command Effect log, OSPM may block the Pass-Through Command calls for that OpCode.

Function Input

None

Function Output

Table 3-9 Get Command Effect Log – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
Extended	2	2	Extended Status Field
Status			
OpCode	2	4	Number of OpCode command effect logs returned
Count			
Reserved	2	6	Shall return 0.
Command	Max Command	8	The command effect data for each OpCode.
Effect Data	Effect Log Data		The Fields in Table 3-8 are repeated OpCode Count
	Length from		times.
	Get Command		
	Effect Log Info		

Table 3-10 Command Effect Data – Output Format

Field	Byte Length	Byte Offset	Description
OpCode	4	0	OpCode representing a Vendor-specific command
OpCode	4	4	Bit[0] – No Effects (NE)
Command			If set to 1, execution of this OpCode does not change DIMM state. If
Effect			this bit is set, all the following bits must be clear.
			Bit[1] – Security State Change (SSC)
			If set to 1, execution of this Opcode results in immediate security
			state change of the NVDIMM.
			Bit[2] – DIMM Configuration Change after Reboot (DCC)
			If set to 1, execution of this Opcode results in change to the
			configuration of the NVDIMM or data contained within persistent

memory regions of the NVDIMM. The change does not take effect until the system re-boots.

Bit[3] - Immediate DIMM Configuration Change (IDCC)

If set to 1, execution of this Opcode results in immediate change to the configuration of the NVDIMM or data contained within persistent memory regions of the NVDIMM.

Bit[4] – Quiesce All IO (QIO)

If set to 1, execution of this Opcode may disrupt on-going operations of the memory region covered by this NVDIMM. The outstanding IO operations corresponding to this NVDIMM must be quiesced before executing this command; otherwise, undefined system behavior will result. Operations that must be quiesced include cpu load/store/move/flush memory operations, writes to NFIT Flush Hint Addresses, HW Block aperture programming sequences, in progress sequences including ARSs, and NVDIMM controller mailbox commands.

Bit[5] - Immediate DIMM Data Change (IDDC)

If set to 1, execution of this Opcode results in immediate change to the data written to the NVDIMM.

Bit[6] – Test Mode (TM)

If set to 1, execution of this Opcode activates a test feature that may disrupt on-going operations. This may result in errors or error recovery operations.

Bit[7] – Debug Mode (DM)

If set to 1, execution of this Opcode activates a debug feature that is non-disruptive, but may alter performance characteristics of the NVDIMM.

Bit[31:8] – Reserved, shall return 0.

3.3 Pass-Through Command (Function Index 9)

This command requests the device to execute the vendor specific command contained in the input payload for the requested device.

Function Input

The following tables outline the expected input payload for this command.

Table 3-11 Pass-Through Command – Input Format

Field	Byte Length	Byte Offset	Description
OpCode	4	0	Vendor-specific command OpCode
OpCode	4	4	In bytes
Parameters			Length of OpCode parameters data
Data Length			
OpCode	OpCode	8	Vendor-specific command input data
Parameters	Parameters		
Data	Data Length		

Function Output

Table 3-12 Pass-Through Command – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
Extended Status	2	2	Extended Status Field
Output Data Length	4	4	In bytes. If Status is not Success, output data length returned is 0.
Output Data	Output Data Length	8	The <i>Output Data</i> is valid only when the <i>Output Data Length</i> is non-zero.

3.4 Enable Latch System Shutdown Status (Function Index 10)

DSM command to allow a SW agent enable the latching of SMART LSS & SMART Dirty Shutdown Count state of each NVDIMM. By default the NVDIMM powers up assuming that this latch is disabled. When the latch is disabled the NVDIMM will report the previously saved value for the SMART LSS and SMART DSC values. Those values will not change again until the next power down sequence following the enable of the latch utilizing this DSM.

Function Input

The following tables outline the expected input payload for this command.

Table 3-13 Enable Latch System Shutdown Status - Input Format

Field	Byte Length	Byte Offset	Description
Latch System Shutdown Status	1	0	Enable System Shutdown Status –Enables latching of SMART Last Shutdown Status (LSS) & SMART Dirty Shutdown Count in NVDIMM on the next power down event. 01 – Enable the latch. Update SMART LSS & SMART Dirty Shutdown Count on next power-down, power-up sequence All other values are reserved.

Function Output

Table 3-14 Enable Latch System Shutdown Status – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
Extended	2	2	Extended Status Field
Status			

3.5 Get Supported Modes (Function Index 11)

This command requests the platform to return details about the supported Modes of the NVDIMM Interface implementation.

Function Input

None

Function Output

Table 3-15 Get Supported Modes – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
Extended	2	2	Extended Status Field
Status			
Supported	2	4	The list of the DIMMs capabilities:
Modes			Bit[0] – Memory Mode supported
			Bit[1] – PMEM Mode supported
			Bit[2] – Block Aperture Mode supported
			Bit[15:3] – Reserved, shall return 0.

3.6 NVDIMM FW Download

3.6.1 Get FW Info (Function Index 12)

This command returns information for the limits utilized for Send FW Update Data function, the running FW image revision, the running FW image Firmware Interface Specification (FIS) version, and the Updated FW Image, if one exists.

Function Input

None

Function Output

Table 3-16 Get FW Info – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
Extended	2	2	Extended Status Field
Status			
Size of FW	4	4	In bytes,
Update Image			Total size of the FW Update Image Storage Area supported by
Storage Area			the platform.
Max Send FW	4	8	In bytes,
Update Data			Maximum Length value that can be utilized with each Send FW
Length			Update Data command.
Query Finish	4	12	Polling interval in uSecs describing how often software should
FW Update			issue a Query Finish FW Update Status polling command to
Status Polling			check for Finish FW Update completion.
Interval			
Max Time to	4	16	Maximum time in uSec software should have to poll for Query
Query Finish			Finish FW Update Status on a single NVDIMM.
FW Update			
Status			
FW Update	1	20	Flags further defining the FW Update capabilities or features
Capabilities			of the NVDIMM
			Bit[0] – FW Update Requires System Cold Re-Boot – If set the
			NVDIMM requires a system cold-boot for the new FW image
			to become the new executing FW image. This assumes that
			the FW update sequence has completed successfully.
			Bit[7:1] - Reserved Returned as 0.
Reserved	3	21	Read as 0

Running FW Interface Version	4	24	The current running FW Interface Specification (FIS) revision using the product specific format. -Implementations that do not report a full 4 bytes of Running FW Interface Version information shall fill unused MSB bytes with 0's. Note: This is for informational purposes only and shall not be utilized to determine the command set that is supported by the NVDIMM.
Running FW Revision	8	28	Contains the revision information of the currently running NVDIMM firmware using the product specific formatImplementations that do not report a full 8 bytes of Running FW Revision information shall fill unused MSB bytes with 0'sLarger version value indicate newer FW revision.
Updated FW Revision	8	36	Upon successful completion of the Finish FW Update command this field contains the revision information of the updated NVDIMM firmware using the product specific format. -This revision becomes valid after successful completion of a Send FW Update Data & Finish FW Update sequence. This field then becomes invalid after a cold system boot and this revision shall be reported as all 0's at that time. -If no FW image has been sent or an image has been sent but the update has not been finished, or the Finish FW Update fails, then this revision shall be reported as all 0's. -Implementations that do not report a full 8 bytes of Updated FW Revision information shall fill unused MSB bytes with 0's. -Larger version value indicate newer FW revision.

3.6.2 Start FW Update (Function Index 13)

This command requests the NVDIMM device to start a FW download sequence. The FW download sequence consists of a single Start FW Update, followed by one or more Send FW Update Data commands and completes with a single Finish FW Update command followed by one or more Query Finish FW Update Status to poll for Finish FW Update completion.

Function Input

None

Function Output

Table 3-17 Start FW Update - Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			00 – Success. FW Update Context field is valid.
			07 – Function Specific Status (see Extended Status below)
			08 - Failure – Retry Suggested - Out of Resources. Software may
			need to complete other outstanding FW update sequences,
			potentially for other NVDIMM devices before retrying the Start FW
			Update command. It is also possible to abort other FW update
			sequences in progress to recover internal platform resources,
			using the Control Flags in the Finish FW Update input payload.
Extended	2	2	Extended Status Field
Status			01 – FW Update already in progress for this NVDIMM device. The
			FW Update Context field returned is valid and indicates the
			context for the currently executing FW Update on the NVDIMM
			device. Software must complete the current FW update sequence
			with one of the two methods:
			-Sending a Finish FW Update command and possibly a system cold
			re-boot before another FW update sequence can be started on the
			same NVDIMM
			-Using the returned FW Update Context to abort the existing FW
			Update that is in progress by calling Finish FW Update with the
			Control Flag set to Abort Existing FW Update Sequence
			02 – FW Update already occurred – A successful FW update
			sequence has already occurred and another Start FW Update
			command is being attempted without a system cold-boot.
FW	4	4	Upon successful completion of the Start FW Update command this
Update			field contains a platform implementation specific value that must
Context			

be passed as an input parameter to Send FW Update Data and
Finish FW Update commands.

3.6.3 Send FW Update Data (Function Index 14)

This command requests the device to update the FW image in the NVDIMMs FW Update Image Storage Area as part of a FW download sequence. The FW download sequence consists of a single Start FW Update, followed by one or more Send FW Update Data commands and completes with a single Finish FW Update command followed by one or more Query Finish FW Update Status to poll for Finish FW Update completion.

The Offset and Length fields allow software to divide the FW image in to pieces based on the Max Send FW Update Data Length reported in the Get FW Info output payload. There is no ordering restriction regarding how the pieces of the FW image are sent to the NVDIMMs FW Update Image Storage Area.

No validation of the FW image occurs until the FW download sequence is complete. The FW image is considered complete and its validity is verified only after the Finish FW Update command has completed.

If software is aborting a FW Update sequence that is already in progress it can call Finish FW Update directly without issuing any Send FW Update Data commands. See the Control Flags in the Finish FW Update command for details on aborting an outstanding FW Update sequence.

Function Input

Table 3-18 Send FW Update Data - Input Format

Field	Byte Length	Byte Offset	Description
FW Update	4	0	Platform specific FW update sequence context provided by the
Context			platform as part of the Start FW Update output payload.
Offset	4	4	In bytes
			Indicates the byte offset in the NVDIMMs FW Update Image
			Storage Area where this portion of the FW Image data will be
			written
Length	4	8	In bytes
			Indicates the number of bytes to be written starting at the Offset
			specified above
FW Image	Length	12	FW Image data to be written at the starting Offset for Length bytes
Data			

Function Output

Table 3-19 Send FW Update Data - Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C 03 – Invalid Input Parameters - Offset + Length is > Size of FW Update Image Storage Area reported in the Get FW Info command - Length is > Max Send FW Update Data Length reported in the Get FW Info command - Length does not match the size of the ACPI input package contained in Arg3 07 – Function Specific Status (see Extended Status below) 08 - Failure – Out of Resources. Software may need to complete other outstanding FW update sequences, potentially for other NVDIMM devices before retrying the Start FW Update command. It is also possible to abort other FW update sequences in progress to recover internal platform resources,
Extended Status	2	2	using the Control Flags in the Finish FW Update input payload. Extended Status Field 01 – FW Update Context invalid

3.6.4 Finish FW Update (Function Index 15)

This command requests the NVDIMM device to begin the process of finishing a FW download sequence. The FW download sequence consists of a single Start FW Update, followed by one or more Send FW Update Data commands and completes with a single Finish FW Update command followed by one or more Query Finish FW Update Status to poll for Finish FW Update completion.

Upon successful completion of this command, the NVDIMM has begun the process of finishing the FW update process. This consists of decrypting the FW image header, verifying header information including checksum, and saving the FW image in the internal NVDIMM FW Image Storage Area. This can take seconds to complete, requiring the use of the Query Finish FW Update Status so that applications can poll for Update FW completion without waiting for the update to be completed by the NVDIMM.

Software must issue the Query Update FW Status command to poll for Update FW completion. The Update FW image sequence is not complete until the query command returns proper status indicating the Update FW process is complete.

The Control Flags allow software to abort an existing FW Download instead of completing the sequence. Aborting a FW download sequence results in no change to the NVDIMM FW image. If aborting a FW Update sequence, software does not send the Query Finish FW Update command.

Function Input

Table 3-20 Finish FW Update - Input Format

Field	Byte Length	Byte Offset	Description
Control Flags	1	0	Finish FW Update Control Flags 00 – Finish the FW Update sequence. Once software instructs the platform to finish the FW Update, it is not possible to abort the Finish FW Update sequence at a later date. Software needs to wait for the FW Update to complete using the Query Finish FW Update Status. 01 – Abort Existing FW Update Sequence. The FW Update Context describes an existing FW Download sequence that shall be aborted without updating the FW image on the NVDIMM. When aborting an active FW Update sequence, software does not call Query Finish FW Update Status. All other values are reserved.
Reserved	3	1	Must be 0
FW Update Context	4	4	Platform specific FW update sequence context provided by the platform as part of the Start FW Update output payload.

Function Output

Table 3-21 Finish FW Update – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C 00 – Success – The Finish FW Update sequence has started. Software shall call Query Finish FW Update Status command to poll for FW Update sequence completion 05 - Failure – Retry Suggested - Command Timed Out, Other Command In Progress, Mailbox not Ready
			07 – Function Specific Status (see Extended Status below) 08 - Failure – Out of Resources. Software may need to complete other outstanding FW update sequences, potentially for other NVDIMM devices before retrying the Start FW Update command. It is also possible to abort other FW update sequences in progress to recover internal platform resources, using the Control Flags in the Finish FW Update input payload. 09 - Failure – HW Not Ready
Extended Status	2	2	Extended Status Field - Any non-zero value returned here means the FW Update sequence is not active. Software does not need to call Query Finish FW Update Status for any of these cases. 01 – FW Update Context invalid 02 – FW Update already occurred – A successful FW update sequence has already occurred and another Finish FW Update command is being attempted without a system cold-boot. 03 – Current updated FW Image failed authentication checks – fallback to prior FW image 04 – FW update sequence successfully aborted. Only returned if the caller requested a FW Update sequence to be aborted by setting Control Flags to Abort Existing FW Update Sequence.

3.6.5 Query Finish FW Update Status (Function Index 16)

This command allows software to poll for completion of the FW download sequence. The FW download sequence consists of a single Start FW Update, followed by one or more Send FW Update Data commands and completes with a single Finish FW Update command followed by one or more Query Finish FW Update Status to poll for Finish FW Update completion.

Finish FW Update consists of decrypting the FW image header, verifying header information including checksum, and saving the FW image in the internal FW Image Storage Area. This can take seconds to complete requiring the use of the Query Finish FW Update Status so that applications can poll for completion without the BIOS blocking in SMM waiting for the update to be completed by the NVDIMM. The Query Finish FW Update Status Polling Interval returned in the Get FW Info command specifies what frequency software should utilize when polling for Finish FW Update completion using the Query Finish FW Update Status command.

Upon successful completion of this command, the updated FW image will become the new executing FW image on the next system cold re-boot, replacing the currently executing FW image.

Sending a Finish FW Update followed by one or more Query Finish FW Update Status commands completes the FW download sequence and requests the NVDIMM to verify the Updated FW Image and report the revision information for the Updated FW Image. If no updated FW image is sent or the updated FW image is incomplete, Query Finish FW Update Status command will return an appropriate error and the Updated FW Image Revision will be reported as all 0's.

Only a single FW Update sequence can be handled per NVDIMM per system cold-boot sequence. Once successful status is returned for Query Finish FW Update Status, the system must be go through a cold-boot cycle before another FW Update sequence can be executed on that same NVDIMM. Multiple NVDIMMs can have FW images updated and utilize a single system cold-boot to activate the new FW image on all NVDIMMs.

Function Input

Table 3-22 Query Finish FW Update Status – Input Format

Field	Byte Length	Byte Offset	Description
FW	4	0	Platform specific FW update sequence context provided by the
Update			platform as part of the Start FW Update output payload.
Context			

Function Output

Table 3-23 Query Finish FW Update Status – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			00 – Success – The Update FW sequence has completed successfully.
			Authentication checks passed. Updated FW Revision field is valid.
			The Updated FW Image will be loaded on the next system cold-boot.
			07 – Function Specific Status (see Extended Status below)
			08 - The Finish FW Update sequence timed out
Extended	2	2	Extended Status Field
Status			01 – FW Update Context invalid
			02 – FW Update in progress
			03 – Current updated FW Image failed authentication checks –
			fallback to prior FW image
			04 – Sequencing Error – Query Finish FW Update Status called
			without first calling Finish FW Update
Updated	8	4	Upon successful completion of the Finish FW Update command this
FW			field contains the revision information of the updated NVDIMM
Revision			firmware using the product specific format.
			-This becomes valid after successful completion of a Send FW Update
			Data & Finish FW Update sequence. This field then becomes invalid
			after a cold system re-boot.
			-If no FW image has been updated or the updated FW image is
			invalid, or the Finish FW Update fails, then this revision shall be
			reported as all 0's.
			-Implementations that do not report a full 8 bytes of Updated
			-FW Revision information shall fill unused MSB bytes with 0's.
			-Larger version value indicates newer FW revision.

3.7 Inject Error (Function Index 18)

Inject NVDIMM specific errors not covered by the ACPI ARS Error Inject function. None of the injected errors are persistent across power cycles or re-boots unless otherwise stated below. An error will stay injected until disabled using this command or the system is restarted, unless otherwise stated below.

Function Input

Table 3-24 Inject Error - Input Format

Field	Byte Length	Byte Offset	Description
Error Inject Validity Flags	8	0	Valid Fields – if the corresponding validation flag is not set in this field, it is indication to software that the corresponding field is not valid and must not be interpreted. Bit[0] – if set to 1, indicates that all Media Temperature Error Inject fields are valid Bit[1] – if set to 1, indicates that all Spare BlocksPercentage Remaining Trigger fields are valid Bit[2] – if set to 1, indicates that all Fatal Error Trigger fields are valid Bit[3] – if set to 1, indicates that all Dirty Shutdown Error Trigger fields are valid
Media Temperature Error Inject	3	8	Bit[63:4] – Reserved, shall be 0 Media Temperature Error Inject fields - This will override the NVDIMM from reading the actual temperature of the media device and spoof a media temperature reading of the injected value instead. Byte[0] Bit[0] – Enable If 0, injecting Media Temperature Errors is disabled. If 1, the Media Temperature specified will be injected. Bit[7:1] - Reserved, shall be 0. Byte[2:1] - Media Temperature to Inject Bit[14:0] – Temperature in Celsius with 0.0625 resolution Bit[15] – Sign Bit, if 1 the Temperature is negative, if 0 the temperature is positive Note: Although actions taken due to the Media Temperature
			injected may cause adverse effects on the NVDIMM, including IO throttling, the media temperature injected is an artificial temperature and will not cause harm to the NVDIMM. If the critical shutdown temperature, or higher, is injected, the NVDIMM may shutdown in order to preserve the part and data.

Spare	2	11	Spare BlocksPercentage Remaining Trigger - This will spoof the
BlocksPercen			NVDIMM to trigger either:
tage			-User Configured Spare BlocksPercentage Remaining Alarm for a
Remaining			previously set value using the Set SMART Threshold function
Inject			-SMART Health Change Notification for Health Status Non-
Inject			Critical or Critical
			Byte[0]
			Bit[0] – Enable
			If 0, injecting Spare BlocksPercentage Remaining is disabled
			If 1, the Spare BlocksPercentage Remaining will be injected
			Bit[7:1] – Reserved, shall be 0.
			Byte[1] – Spare BlocksPercentage Remaining to inject. Valid
			values are 0-99. All other values are reserved and will result in
			returned Status of Invalid Input Parameters.
			Note: For this trigger to inject a User Configured Spare Block
			Alarm Threshold Trigger requires the Spare Block Alarm
			Threshold to be previously enabled using the Set SMART
			Threshold function. If the Spare Block Alarm Threshold has not
			been enabled, this function will inject SMART Health Change
			notification ACPI Notification 0x81 as follows:
			Spare BlocksPercentage Remaining of 1% - Causes Health Status
			to change to Non-Critical
			Spare BlocksPercentage Remaining of 0% - Causes Health Status
			to change to Critical
Fatal Error	1	13	Fatal Error Trigger – This trigger will spoof the NVDIMM to
Inject	1	13	trigger a fatal NVDIMM error. Injecting this error will result in a
lillect			
			change to the SMART Health Info – Health Status of fatal.
			Bit[0] – Enable
			If 0, injecting Fatal Error Trigger is disabled
			If 1, a Fatal Error Trigger will be injected
			Bit[7:1] – Reserved, shall be 0
Dirty	1	14	Dirty Shutdown Error Trigger – This trigger will spoof an ADR or
Shutdown			system shutdown failure on the next power down as follows:
Error Inject			-Enable SMART Last Shutdown Status (LSS) and Dirty Shutdown
			Count (DSC) increment via the Enable Latch System Shutdown
			Status DSM with Bit[0] - Enable System Shutdown Status set
			-Power down the system – The device spoofs a failure and
			latches SMART LSS, increments SMART DSC
			· · · · · · · · · · · · · · · · · · ·
			-Power the system up – SMART Health Change is reported with
			non-zero LSS ad incremented DSC

	Bit[0] – Enable
	If 0, injecting ADR Failure is disabled
	If 1, an ADR Failure will be injected
	Bit[7:1] – Reserved, shall be 0

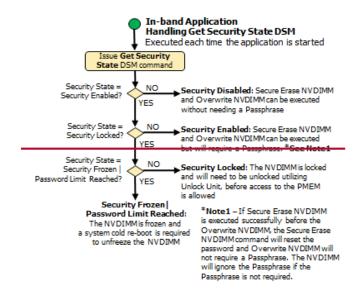
Function Output

Table 3-25 Inject Error Data – Output Format

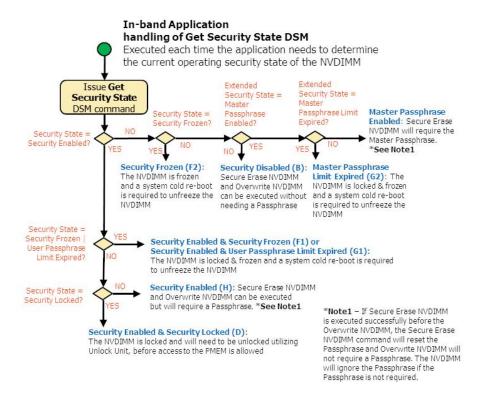
Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			03 – Invalid Input Parameters
			Returned If any Error Inject parameter value requested is
			invalid. No changes are made to any previous enable/disable
			Error Injection state and no changes are made to any previously
			set Error Inject values.
Extended	2	2	Extended Status Field
Status			01 – Platform not enabled for error injection. Error Injection
			must be enabled on the platform before attempting to inject
			NVDIMM specific errors.

3.8 NVDIMM Security Management

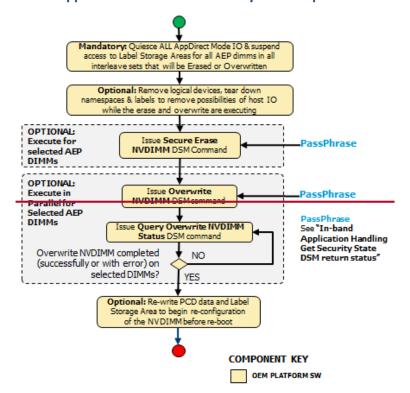
3.8.1 Theory Of Operation

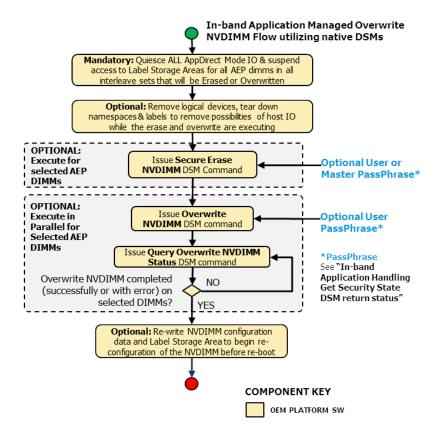

The following sequences outline the supported DSM based Secure Erase NVDIMM and Overwrite NVDIMM execution flow that utilizes an in-band application. Note the following notes regarding the in-band DSM based security implementation:

- The NVDIMM implements a security model similar to the legacy SATA/SCSI ATA security model utilized with HDDs and SSDs.
- To support this, the NVDIMM requires a pass phrase to enable security on the NVDIMM, disable
 of previously enabled NVDIMM security, Secure Erase NVDIMM and Overwrite NVDIMM
 requests.
- Removing the logical devices from access by the running OS while the Secure Erase and
 Overwrite NVDIMM operations are executed is recommended to remove any interactions with
 host IO while the erase or overwrite are executing.
- Speculative reads from the mapped in PMEM will pollute cpu caches with all 1's data for a locked NVDIMM. It is imperative that the system either be restarted before first read access, OR cpu caches are invalidated before the first read access is allowed, after unlocking the NVDIMM. The DSM commands do NOT invalidate cpu caches.
- The NVDIMM allows access to the Label Storage Area and PMEM after the Overwrite NVDIMM completes and before the system has been restarted with a cold system re-boot. This allows optional re-configuration of the NVDIMM, including the initial re-write of the Label Storage Area to occur before the first reboot in the configuration process.
- In-Band Managed Overwrite NVDIMM Operation utilizing native DSMs:
 - This is an OEM implementation specific function required when overwriting AEP DIMMs without BIOS intervention or system reboots
 - Requires that all IO be quiesced for AppDirect regions before execution
 - May require passphrase knowledge to be available to ring3/0 application
- Requires no system re-boots until after Overwrite NVDIMM is complete
- In-band Applications utilizes the following mechanisms to handle the Secure Erase and Overwrite NVDIMM implementation:
 - DSM V1.7 Spec Native DSMs are added for the following security commands to match
 FIS V1.12:
 - GetSecurityState
 - SetPassphrase
 - DisablePassphrase
 - UnlockUnit
 - FreezeLock
 - SecureEraseNVDIMM
 - OverwriteNVDIMM
 - QueryOverwriteNVDIMMStatus



- DSM V1.8 Spec Native DSMs are added for the following security commands to match FIS V1.13:
 - SetMasterPassphrase
- Secure Erase NVDIMM DSM broken in to Secure Erase NVDIMM w User Passphrase and Secure Erase NVDIMM w Master Passphrase DSMs. This allowed preserving backwards compatibility with the V1.7 DSM spec and released OS support code while adding the Master Passphrase support. This requires some BIOS translation to complete the payload mapping.


The following figures shows the basic handling of the Get Security State DSM each time the application is executed <u>or requires the current security state of the NVDIMM</u>, <u>and</u> the Passphrase requirements when executing a Secure Erase NVDIMM or Overwrite NVDIMM command.



Application In-band Get Security State Sequence

Application In-band Secure Erase & Overwrite NVDIMM Sequence

3.8.2 Get Security State (Function Index 19)

Retrieve the current security state of the NVDIMM.

Function Input

None

Function Output

Table 3-26 Get Security State - Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			00 – Success. The security command executed successfully and
			the returned Security State is valid.
			05 - Failure – Retry Suggested - Command Timed Out, Other
			Command In Progress, Mailbox not Ready

			09 – Failure – HW Not Ready
Extended	2	2	Extended Status Field
Status			Undefined
Extended	1	4	Extended Security State
Security	_		Bit[0] – Master Passphrase Enabled – When set to 1, the Master
<u>State</u>			Passphrase feature has been enabled. This indicator does not tell
			you if the default Master Passphrase has been overwritten or not.
			Bit[1] – Master Passphrase Limit Expired When set to 1, the
			NVDIMM is frozen due to the Master Passphrase limit reached.
			While this is reported as a different state than the frozen state
			(Bit[3]), the NVDIMM will freeze its internal security state when
			the passphrase limit has been reached, to protect itself from a
			denial-of-service attack. Once frozen, all security DSMs, except
			Get Security State and Query Overwrite NVDIMM Status, will be
			rejected. Other management interfaces and DSMs are not
			affected. If this occurs, a cold system re-boot, that includes power
			cycling of the NVDIMM, is required before the security state of the
			NVDIMM can be changed utilizing these DSMs.
			Bit[7:2] – Reserved, read as 0
Reserved	3	<u>5</u>	Returned as 0
Security	1	8	Current NVDIMM Security State
State			NO BITS SET: Security Supported, Security Disabled
			Bit[0] – Reserved - Returned as 0
			Bit[1] – Security Enabled - When Set to 1, security is enabled on
			the NVDIMM. Security Disabled - When Clear to 0, the PMEM can
			be accessed without unlocking the NVDIMM. Overwrite NVDIMM,
			Secure Erase NVDIMM and security commands that normally
			require a Passphrase, can be executed without a Passphrase.
			Bit[2] – Security Locked - When set to 1, the NVDIMM is locked.
			Access to the Label Storage Area and the PMEM is only allowed by
			supplying the correct Passphrase. Changing the configuration is
			not allowed. To enable media access the NVDIMM media is
			unlocked by executing a Unlock Unit command and supplying the
			required Passphrase
			Bit[3] – Security Frozen - When set to 1, the current Security State
			is frozen. The NVDIMM may freeze its internal security state to
			protect itself from a denial-of-service attack. Once frozen, all
			security DSMs, except Get Security State and Query Overwrite
			NVDIMM Status, will be rejected, while other management
			interfaces and DSMs are not affected. If this occurs, a cold system
			re-boot, that includes power cycling of the NVDIMM, is required
1	1	1	re-boot, that includes power cycling of the hybriding, is required

before the security state of the NVDIMM can be changed utilizing these DSMs. The NVDIMM is not Freeze Locked by default. Bit[4] - <u>User Password Passphrase Limit Reached Expired</u> - When set to 1, the NVDIMM is frozen due to the User password Passphrase limit reached. While this is reported as a different state than the frozen state (Bit[3]), the NVDIMM will freeze its internal security state when the password passphrase limit has been reached, to protect itself from a denial-of-service attack. Once frozen, all security DSMs, except Get Security State and Query Overwrite NVDIMM Status, will be rejected. O, while other management interfaces and DSMs are not affected. If this occurs, a cold system re-boot, that includes power cycling of the NVDIMM, is required before the security state of the NVDIMM can be changed utilizing these DSMs--. Bit[5] – Security Not Supported - When set to 1, the NVDIMM security feature is not supported by this HW Bit[6] – Reserved - Returned as OBIOS Security Nonce has been set Bit[7] – Reserved - Returned as 0

3.8.3 Set Passphrase (Function Index 20)

Allows the caller to set the User Passphrase and enable security on the NVDIMM.

Function Input

The following tables outline the expected input payload for this command.

Table 3-27 Set Passphrase – Input Format

Field	Byte Length	Byte Offset	Description
Current Passphrase	32	0	The end-userUser P-passphrase supplied when the user enables security on the NVDIMM using this command. -If the NVDIMM is in the Security Enabled state, this must match the passphrase that was supplied in the New Passphrase field on last successful invocation of the Set Passphrase command. -If the NVDIMM is in the Security Disabled state this field is ignored
New Passphrase	32	32	The new end-user <u>User passphrase Passphrase</u> . Required field utilized as part of setting a new <u>user passphrase</u> on the NVDIMM.

Function Output

Table 3-28 Set Passphrase – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			00 – Success. The security command executed successfully.
			<u>01 - Failure - Function Not Supported - This is reported if the</u>
			NVDIMM Security Enabled state for Get Security State command
			is not set
			07 – Function Specific Status (see Extended Status below)
			10 - Failure — Invalid Security State
			11 - Failure – Invalid Current Passphrase Supplied
Extended	2	2	Extended Status Field
Status			Undefined

3.8.4 Disable Passphrase (Function Index 21)

Disable security on the NVDIMM. If security is not enabled via Set Passphrase, it is not required to disable security.

Function Input

The following tables outline the expected input payload for this command.

Table 3-31 Disable Passphrase – Input Format

Field	Byte Length	Byte Offset	Description
Current Passphrase	32	0	The end-uUser passphrase Passphrase supplied when the user disables security on the NVDIMM using this command. -This field is required if the NVDIMM returns Security Enabled state for Get Security State command. See Theory Of Operation, Application In-band Get Security State Sequence for this logic.

Function Output

Table 3-32 Disable Passphrase – Output Format

Field	Byte	Byte	Description
	Length	Offset	
Status	2	0	Defined above in Table 3-C
			00 – Success. The security command executed successfully.
			01 - Failure - Function Not Supported - This is reported if the
			NVDIMM Security Enabled state for Get Security State command
			<u>is not set</u>
			10 - Failure – Invalid Security State
			11 - Failure – Invalid Current Passphrase Supplied
Extended	2	2	Extended Status Field
Status			Undefined

3.8.5 Unlock Unit (Function Index 22)

Unlock the NVDIMM and allow configuration changes. To make changes to the configuration of the NVDIMM, it is required to unlock the NVDIMM using this command. While the unit is locked, host IO to PMEM regions will return all 1's data for reads and drop writes completely. Unless speculative cpu reads are actively prevented (removing virtual memory mapping may not be enough), cpu caches must be invalidated after the Unlock Unit command completes and before the NVDIMM is returned to normal operation.

NOTE: NVDIMM users wishing to utilize the Clear Uncorrectable Error DSM found in the ACPI specification must unlock the NVDIMM first utilizing this command.

Function Input

The following tables outline the expected input payload for this command.

Byte Byte Description

Field	Byte Length	Byte Offset	Description
Current	32	0	The end-uUser passphrase Passphrase supplied when the user
Passphrase			unlocks the NVDIMM using this command.
			-This field is required if the NVDIMM returns Security Locked
			state for Get Security State command. See Theory Of Operation ,
			Application In-band Get Security State Sequence for this logic.

Function Output

Table 3-34 Unlock Unit - Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			00 – Success. The security command executed successfully.
			01 - Failure - Function Not Supported - This is reported if the
			NVDIMM Security Enabled state for Get Security State command
			<u>is not set</u>
			10 - Failure – Invalid Security State
			11 - Failure – Invalid Current Passphrase Supplied
Extended	2	2	Extended Status Field
Status			Undefined

3.8.6 Freeze Lock (Function Index 23)

Lock the current security state of the NVDIMM, requiring a cold system re-boot before further attempts to change the state of the NVDIMM. After successful execution of this command, Get Security State shall report **Security Frozen** state.

Function Input

None

Function Output

Table 3-35 Freeze Lock - Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			00 – Success. The security command executed successfully.
			01 - Failure - Function Not Supported - This is reported if the
			NVDIMM Security Enabled state for Get Security State command
			<u>is not set</u>
			10 - Failure – Invalid Security State
Extended	2	2	Extended Status Field
Status			Undefined

3.8.7 Secure Erase NVDIMM <u>w User Passphrase</u> (Function Index 24)

Instruct the NVDIMM to generate a new encryption key for the PMEM which cryptoscrambles/randomizes all existing user data in the PMEM using the User Passphrase. The Label Storage Area is unaffected and the existing configuration is preserved. The erase typically takes seconds or less to complete. For details on affected data and metadata regions on the NVDIMM when executing this action, see the product specific FIS.

NOTE: There are significant responsibilities placed on the caller utilizing Secure Erase. See the additional notes at the end of this section.

Function Input

Table 3-36 Secure Erase NVDIMM w User Passphrase - Input Format

Field	Byte Length	Byte Offset	Description
Current User	32	0	The User Passphrase supplied when the user secure erases the
Passphrase			NVDIMM using this command.
			See Theory Of Operation, Application In-band Get Security State
			Sequence for this logic.
			- This protocol will only successfully erase the NVDIMM If the Security Enabled state is reported for Get Security State
			command and the correct User Passphrase is provided when
			erasing the NVDIMM. See Theory Of Operation, Application In-
			band Get Security State Sequence for this logic.

Function Output

The following tables outline the expected output payload for this command.

Table 3-37 Secure Erase NVDIMM w User Passphrase - Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			00 – Success. The security command executed successfully.
			10 - Failure – Invalid Security State
			11 - Failure – Invalid Current Passphrase Supplied
Extended	2	2	Extended Status Field
Status			Undefined

Further application responsibilities when utilizing Secure Erase NVDIMM:

- Host IO to the PMEM shall be quiesced and new IO blocked while this security command is executing for the NVDIMM
- If the application will also execute an Overwrite NVDIMM command, the Secure Erase NVDIMM shall be executed before the Overwrite NVDIMM
- Any IO to the PMEM region while the Secure Erase NVDIMM is executing will cause encrypted random data to be read. While tearing down the logical device stack can be helpful in removing host IO, unless speculative cpu reads are actively prevented (removing virtual memory mapping may not be enough), If this is not followed with an Overwrite NVDIMM sequence, cpu caches must be invalidated, after the Secure Erase NVDIMM command completes and before the NVDIMM is returned to operation.
- While the Label Storage Area is preserved, any address abstraction info blocks in PMEM are destroyed.

3.8.8 Overwrite NVDIMM (Function Index 25)

The Overwrite NVDIMM operation overwrites the entire PMEM of the NVDIMM with encrypted 0's including retired ECC blocks, NVM die that were previous swapped out as part of a die sparing operation, and all user addressable PMEM locations. After the overwrite process has completed, the Label Storage Area is overwritten with 0's and all configuration data is lost.

This operation can take a significant amount of time requiring the use of the Query Overwrite NVDIMM Status to poll for the completion of the Overwrite operation. SW shall call Query Overwrite NVDIMM Status at least once to verify completion of the operation. These interfaces allow parallel Overwrite NVDIMM operations to be started on all NVDIMMs and parallel polling for completions. Since this operation takes a long amount of time to complete, it is recommended to overwrite all of the NVDIMMs in the same session.

The Overwrite NVDIMM operation may not be supported for all NVDIMM configurations. If an overwrite operation is requested for an unsupported overwrite configuration, the Overwrite NVDIMM request shall be failed with an explicit extended status, Failure – Unsupported Overwrite Configuration.

NOTE: If Secure Erase NVDIMM is executed successfully before the Overwrite NVDIMM, the Secure Erase NVDIMM command will reset the <u>password-passphrase</u> and Overwrite NVDIMM will not require a Passphrase. The NVDIMM will ignore the Passphrase argument in the input payload if the Passphrase is not required.

NOTE: There are responsibilities placed on the caller utilizing Overwrite NVDIMM. See the additional notes at the end of this section.

Function Input

Table 3-38 Overwrite NVDIMM - Input Format

Field	Byte Length	Byte Offset	Description
Current	32	0	The <u>end-userUser</u> <u>passphrase</u> <u>Passphrase</u> supplied when the user
Passphrase			overwrites the NVDIMM using this command. See Theory Of
			Operation, Application In-band Get Security State Sequence for
			this logic.
			-This field is required if the NVDIMM returns Security Enabled state for Get Security State command. See Theory Of Operation,
			Application In band Get Security State Sequence for this logic.

Function Output

The following tables outline the expected output payload for this command.

Table 3-39 Overwrite NVDIMM – Output Format

Field	Byte Length	Byte Offset	Description	
Status	2	0	Defined above in Table 3-C 00 – Success. The security command executed successfully. This status indicates that the overwrite operation was started. Utilize Query Overwrite NVDIMM Status security command to periodically poll for command completion. 07 – Function Specific Status (see Extended Status below)	
			10 - Failure – Invalid Security State 11 - Failure – Invalid Current Passphrase Supplied	
Extended Status	2	2	Extended Status Field 01 – Failure – Unsupported Overwrite Configuration	

Further application responsibilities when utilizing Overwrite NVDIMM:

- At a minimum, host IO to PMEM of the NVDIMM shall be quiesced and new IO blocked while this security command is executing for the NVDIMM
- If the application will also execute a Secure Erase NVDIMM command, the Overwrite NVDIMM SHALL be executed AFTER the Secure Erase NVDIMM
- After SW has issued the Overwrite NVDIMM DSM request and it has returned successful status, SW is required to poll for Overwrite operation completion by calling Query Overwrite NVDIMM Status command periodically until the command completes
- The NVDIMM's internal configuration information is overwritten and all partition info & interleave set configuration info is lost. The NVDIMM may lose its relationship to its current interleave set after the completion of the Overwrite NVDIMM command.
- The Label Storage Area is overwritten and all label info blocks and labels are destroyed.

3.8.9 Query Overwrite NVDIMM Status (Function Index 26)

After SW has issued the Overwrite NVDIMM DSM request and it has returned successful status, SW is required to poll for Overwrite operation completion by calling this command periodically until successful status or failed status is reported. As long as "Overwrite NVDIMM In Progress" is reported for extended status, SW shall continue to poll for completion. Once the Query Overwrite NVDIMM Status operation completes with success status, optionally, it is possible to begin a new configuration sequence to write new NVDIMM configuration information, including the Label Storage Area data, before the first re-boot in the configuration process.

NOTE: There are responsibilities placed on the caller utilizing Query Overwrite NVDIMM Status. See the additional notes at the end of this section.

Function Input

None

Function Output

Table 3-40 Query Overwrite NVDIMM Status – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
			00 – Success. The security command executed successfully.
			This status indicates the Overwrite NVDIMM operation completed successfully.
			07 – Function Specific Status (see Extended Status below)
Extended	2	2	Extended Status Field
Status			01 – Overwrite NVDIMM in Progress. Software should continue to
			poll for overwrite completion until a success or failure status is returned
			02 – Sequencing Error – Query Overwrite NVDIMM Status called without first calling Overwrite NVDIMM

Further application responsibilities when utilizing Query Overwrite NVDIMM Status:

- Host IO to the PMEM of the NVDIMM shall be quiesced and new IO blocked while this security command continues to report "Overwrite NVDIMM In Progress".
- If the Overwrite NVDIMM fails to complete with success the state of the NVDIMM is indeterminate and it is recommended that the Overwrite be executed again.
- The Overwrite NVDIMM operation takes a significant amount of time to complete: 15min 128GB, 30min 256GB, 60min 512GB, etc. There for, it is recommended that SW poll for completion with an interval of 10-60 seconds.. These values can also be used as a guide as to when SW may want to give up on polling for successful completion. Implementations may wish to issue the first query with a small timeout to make sure the Overwrite NVDIMM is still executing before moving to a longer polling frequencies for the rest of the query calls.

Note: It is possible to issue other DSMs while the Overwrite is executing so SW can monitor the DIMM health and temperature (for example) while the Overwrite DIMM executes. Other operations (ARS, FW Update) are not allowed and those DSMs will be rejected.

3.8.10 Set Master Passphrase (Function Index 27)

Allows the caller to set the Master Passphrase on the NVDIMM. The Master Passphrase is a passphrase that can be used to perform a Secure Erase operation. This command is only available if security is not enabled. Setting a Master Passphrase does not enable security. Once the Master Passphrase is enabled, it is always in affect. You can change from the default to another value but you can't turn it off. If security is enabled after enabling the master passphrase, either passphrase can be utilized when calling Secure Erase NVDIMM.

Function Input

The following tables outline the expected input payload for this command.

Table 3-29 Set Master Passphrase - Input Format

<u>Field</u>	Byte Length	Byte Offset	<u>Description</u>
<u>Current</u> <u>Passphrase</u>	<u>32</u>	<u>0</u>	The Master Passphrase supplied when the user previously set a master passphrase on the NVDIMM using this command.
			-If the NVDIMM is in the Master Passphrase Enabled state, this must match the passphrase that was supplied in the New
			Passphrase field on last successful invocation of the Set Master Passphrase command.
			-The first time this is invoked, the default master passphrase must be utilized as the Current Passphrase. The default master
			passphrase is 32 bytes of zero's.
<u>New</u>	<u>32</u>	<u>32</u>	The new Master Passphrase. Required field utilized as part of
<u>Passphrase</u>			setting a new master passphrase on the NVDIMM.

Function Output

<u>Table 3-30 Set Master Passphrase - Output Format</u>

<u>Field</u>	<u>Byte</u>	<u>Byte</u>	<u>Description</u>
	<u>Length</u>	<u>Offset</u>	
<u>Status</u>	2	<u>0</u>	Defined above in Table 3-C
			<u>00 – Success. The security command executed successfully.</u>
			<u>01 - Failure - Function Not Supported - This is reported if the</u>
			NVDIMM Master Passphrase Enabled state for Get Security State
			command is not set
			<u>07 – Function Specific Status (see Extended Status below)</u>
			<u>10 - Failure – Invalid Security State</u>
			<u>11 - Failure – Invalid Current Passphrase Supplied</u>

IntelOptaneDC DSM Interface - V1.8

Extended	<u>2</u>	<u>2</u>	Extended Status Field	
<u>Status</u>			<u>Undefined</u>	

3.8.11 Secure Erase NVDIMM w Master Passphrase (Function Index 28)

Instruct the NVDIMM to generate a new encryption key for the PMEM which crypto-scrambles/randomizes all existing user data in the PMEM, using the Master Passphrase. The Label Storage Area is unaffected and the existing configuration is preserved. The erase typically takes seconds or less to complete. For details on affected data and metadata regions on the NVDIMM when executing this action, see the product specific FIS.

NOTE: There are significant responsibilities placed on the caller utilizing Secure Erase. See the additional notes at the end of this section.

Function Input

Table 3-36 Secure Erase NVDIMM w Master Passphrase - Input Format

<u>Field</u>	Byte Length	Byte Offset	<u>Description</u>
Master	<u>32</u>	<u>0</u>	The Master Passphrase supplied when the user secure erases the
<u>Passphrase</u>			NVDIMM using this command.
			See Theory Of Operation, Application In-band Get Security State
			Sequence for this logic.
			-This protocol will only successfully erase the NVDIMM If the
			Master Passphrase Enabled state is reported for Get Security
			State command and the correct Master Passphrase is provided
			when erasing the NVDIMM.

Function Output

The following tables outline the expected output payload for this command.

Table 3-37 Secure Erase NVDIMM w Master Passphrase - Output Format

<u>Field</u>	Byte Length	Byte Offset	<u>Description</u>	
<u>Status</u>	<u>2</u>	<u>0</u>	<u>Defined above in Table 3-C</u>	
			<u>00 – Success. The security command executed successfully.</u>	
			01 - Failure - Function Not Supported - If the NVDIMM Master	
			Passphrase Enabled state for Get Security State command is NOT	
			set, this error will result.	
			<u>10 - Failure – Invalid Security State</u>	
			11 - Failure – Invalid Master Passphrase Supplied	
Extended	<u>2</u>	<u>2</u>	Extended Status Field	
<u>Status</u>			<u>Undefined</u>	

Further application responsibilities when utilizing Secure Erase NVDIMM:

- Host IO to the PMEM shall be quiesced and new IO blocked while this security command is executing for the NVDIMM
- If the application will also execute an Overwrite NVDIMM command, the Secure Erase NVDIMM shall be executed before the Overwrite NVDIMM
- Any IO to the PMEM region while the Secure Erase NVDIMM is executing will cause encrypted random data to be read. While tearing down the logical device stack can be helpful in removing host IO, unless speculative cpu reads are actively prevented (removing virtual memory mapping may not be enough), cpu caches must be invalidated, after the Secure Erase NVDIMM command completes and before the NVDIMM is returned to operation.
- While the Label Storage Area is preserved, any address abstraction info blocks in PMEM are destroyed.

3.9 Deprecated Functions

3.9.1 Get Block NVDIMM Flags (Function Index 3)

This function that is only applicable if block mode is enabled in the NVDIMM (i.e., the Number of Block Control Windows field set is set to a non-zero value in the NVDIMM Control Region Structure). Used by the NVDIMM to report specific features or alternative sequences that need to be implemented by SW drivers.

Warning: This function has been deprecated. It is included here for backwards compatibility with existing Arg1 - Revision Id = 1 implementations.

Function Input

None

Function Output

Table 3-41 Get Block NVDIMM Flags - Output Format

0	Defined above in Table 3-C
2	Extended Status Field
4	Byte[0] Bit[0] – Block Data Window Invalidation Required – If this bit is set to 1, indicates that the NVDIMM requires the driver to flush previous data from cache lines that will be moved through the Block Data Window, before reusing the Block Data Window for read. If set to '0', flushing of previous data from cache lines that will be moved through the Block Data Window are handled by the platform or VMM. Typical usage of this flag is in a virtualized environment. Bit[1] – Command Register in Block Control Window Latch – If this bit is set to 1, indicates that after a write to the Command Register in Block Control Windows, the NVDIMM requires the software to read the same Command Register to ensure that the command is latched before reading contents from Block Data Window. If this bit is set to 0, software is allowed to read the contents of the Block Data Window immediately after writing to the Command Register of Block Control Window. Bits[7:2] – Reserved, shall return 0 Byte[3:1] – Reserved, shall return 0
	2

3.9.2 Get Namespace Label Size (Function Index 4)

This command requests the device to return the size of the Namespace Label storage area for the requested device.

Warning: This function has been deprecated in preference to the ACPI 6.2 _LSI (Label Storage Information) NVDIMM Device Interface and is only supported with Arg1 – Revision Id = 1. It is included here for backwards compatibility with existing Arg1 - Revision Id = 1 implementations.

Function Input

None

Function Output

The following tables outline the expected output payload for this command. See **updated/new additions** & **clarifications** below for this existing LSM.

Table 3-42 Get Namespace Label Size – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C
Extended Status	2	2	01 – Extended Success Status - Locked Persistent Memory Region – The PMEM is currently in a locked state. This DSM is expected to continue to report a valid namespace label size, returns status success (0) and reports this extended status if the persistent memory region of the NVDIMMs are in a state that requires one or more security keys to be applied before the region is accessible.
Size of Namespace Label Area	4	4	Size returned in bytes
Max Namespace Label Data Length	4	8	In bytes, Maximum size of the namespace label data length supported by the platform in <i>Get/Set Namespace Label Data</i> functions

3.9.3 Get Namespace Label Data (Function Index 5)

This command requests the device to return Namespace Label storage area data based on the requested buffer offset and length for the requested device.

Warning: This function has been deprecated in preference to the ACPI 6.2 _LSR (Label Storage Read) NVDIMM Device Interface and is only supported with Arg1 – Revision Id = 1. It is included here for backwards compatibility with existing Arg1 - Revision Id = 1 implementations.

Function Input

The following tables outline the expected input payload for this command.

Table 3-43 Get Namespace Label Data - Input Format

Field	Byte Length	Byte Offset	Description
Offset	4	0	In bytes Indicates the offset in the namespace label data area, to which the namespace label data is to be read from the target NVDIMM
Length	4	4	In bytes

Function Output

Table 3-44 Get Namespace Label Data – Output Format

Field	Byte Length	Byte Offset	Description
Status	2	0	Defined above in Table 3-C 03 – Invalid Input Parameters - Offset + Length is > size of Namespace Label Data Area (Max Namespace Label Data Length from GetNamespaceLabelDataSize LSM) - Length is > maximum amount of data the OSPM can transfer in a single request
Extended Status	2	2	Extended Status Field
Namespace Label Data	Varies	4	The size of the output is equal to input's <i>Length</i> if <i>Status</i> is Success; otherwise, the contents of rest of the output buffer are not valid.

3.9.4 Set Namespace Label Data (Function Index 6)

This command requests the device to update Namespace Label Data area data based on the requested buffer offset and length for the requested device.

Warning: This function has been deprecated in preference to the ACPI 6.2 _LSW (Label Storage Write) NVDIMM Device Interface and is only supported with Arg1 — Revision Id = 1. It is included here for backwards compatibility with existing Arg1 - Revision Id = 1 implementations.

Function Input

The following tables outline the expected input payload for this command.

Table 3-45 Set Namespace Label Data - Input Format

Field	Byte Length	Byte Offset	Description
Offset	4	0	In bytes Indicates the offset in the namespace label data area, to which the <i>Namespace Label Data</i> is to be written to the target NVDIMM
Length	4	4	In bytes
Namespace Label Data	Varies	8	Namespace label data. Size of the namespace label data is as indicated by <i>Length</i> field above.

Function Output

Table 3-46 Set Namespace Label Data – Output Format

Field	Byte	Byte	Description
	Length	Offset	
Status	2	0	Defined above in Table 3-C
			03 – Invalid Input Parameters
			- Offset + Length is > size of Namespace Label Data Area (Max
			Namespace Label Data Length from
			GetNamespaceLabelDataSize LSM)
			- Length is > maximum amount of data the OSPM can
			transfer in a single request
Extended	2	2	Extended Status Field
Status			