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1 Introduction 
Persistent memory (pmem) is presented to applications in various ways.  For legacy applications that are 

not pmem-aware, the traditional storage interfaces provide access, allowing them to use pmem without 

modification.  Alternatively, the application may be pmem-aware, modified to get the full benefit of 

byte-addressable persistence.  These pmem-aware applications get direct access to the pmem, 

completely bypassing the kernel once the pmem is memory-mapped by the application.  This allows 

direct load/store access between the application and the pmem.  Along with this direct access comes 

several application-level responsibilities: flushing changes to persistence, handling memory errors, and 

detecting dirty shutdowns.  This document focuses on dirty shutdowns, specifically the mechanism used 

to detect them: the dirty shutdown count (DSC). 

This document assumes a general background on persistent memory programming, the SNIA NVM 

Programming Model, and the mechanisms used by applications to memory-map pmem.  For more 

background on these topics, the web site http://pmem.io provides documentation, including an online 

copy of the Persistent Memory Programming book.  The Persistent Memory Development Kit (PMDK), a 

suite of libraries to make pmem programming easier, is also available on the pmem.io web site.  

Although the goal of this document is to describe the dirty shutdown handling for application 

developers, the PMDK libraries already handle dirty shutdowns and our recommendation is to use those 

libraries rather than re-inventing the code to deal with them. 

Section 2 of this document goes into the details of dirty shutdowns and the steps an application takes to 

handle them.  Those steps can be summarized at a high-level as: 

• Tracking the last known DSC and volume UUID, typically by storing it in headers of persistent 

memory data files and detecting when the DSC has changed on start-up. 

• Avoiding false positives by tracking clean/dirty information in persistent memory data files, so 

that files that were cleanly-closed are not considered corrupted when the volume’s DSC 

increases. 

• Forcing the appropriate service action to happen when affected by a dirty shutdown, typically by 

failing to start the application, requiring any corrupt data files to be restored from backup 

copies. 

Sections 3 and 4 contain deeper details on operating system support and Intel persistent memory 

specifics, respectively. 

 

The Intel architecture and the Intel® Optane™ DC Persistent Memory module (DCPMM) are the focus of 

this paper, however the programming model and the need to detect dirty shutdowns is not specific to 

those products.  The PMDK libraries are designed to use the techniques described in this paper to detect 

dirty shutdowns on any product that supports them. 

http://pmem.io/
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2 Dirty Shutdown Count 
Architecture 

This white paper provides background information on the application level persistent memory (PMEM) 

Dirty Shutdown Count (DSC), a feature that is available with current PMEM technology.  This 

functionality is optionally implemented by a platform and provides an indicator to any SW component 

that wishes to make use of persistent memory.  While this paper is written with the Intel® DCPMM 

implementation specifically in mind, the functionality put forward here is an application level feature 

that, depending on NVDIMM vendor implementation, can make use of vendor agnostic ACPI 6.3 

interfaces. 

 DSC Overview 
Consider the path that a store takes on a typical Intel x86 server, as shown in Figure 2-1.  The store, 

starting in the upper left, will traverse the CPU caches, eventually making its way to the memory 

controller (shown as a yellow trapezoid), where it is queued in a write pending queue (WPQ) to be sent 

to the persistent memory DIMM.  

 

Figure 2-1. The Power Fail Protected Domains 
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Now consider the steps that software must take to ensure the store is persistent, even in the face of a 

power failure.  There are two cases to consider.  First, the large red box represents a system where the 

CPU caches are automatically flushed on power failure, so that stores sitting in the CPU caches are 

considered persistent by applications.  In the second, more common case, the smaller red box on the 

bottom of the figure represents the power fail protected domain and stores are only considered 

persistent when they have been accepted by the memory subsystem. 

As shown in the figure, x86 platforms that support pmem may support the larger persistence domain, 

but they must support the smaller persistence domain.  A required platform feature known as 

asynchronous DRAM refresh (ADR) ensures that any stores in the memory controller are flushed all the 

way to the DIMM in the face of unexpected power loss.  This flush-on-fail operation is made possible by 

stored energy in the system power supply.  All ADR-capable systems support this additional stored 

energy, as well as a hardware signal sent by the power supply to indicate power has failed. 

What happens if something prevents the flush-on-fail from working correctly?  The result is that an 

unknown number of stores in the write pending queue did not make it to the DIMM.  Since the number 

and destination of the stores is unknown, and any ordering assumptions made by software is lost, the 

result is that the data on the DIMM is in an unknown state.  It is possible, however, to reduce the impact 

of this failure by keeping track of which files were potentially being written when the system failed.  

Files that were not open or that were only open for reading could not be impacted by this failure, only 

files that were open for writing (more on this in section 2.3 below).  The first step to handling this failure 

case is to indicate the failure to software.  The mechanism for doing this is the dirty shutdown count 

(DSC). 

 

 The importance of utilizing a counter 
Some background on the design of the DSC may help understand how it works.  During the early design 

of the Intel® persistent memory, known as Optane™ Data Center Persistent Memory modules (DPCMM), 

a single bit was thought to be sufficient for detecting dirty shutdowns.  This bit is known as the last 

shutdown state (LSS) and was latched so that a dirty shutdown was indicated to the OS until the OS 

specifically cleared the state on the DCPMM.  This way, if a dirty shutdown was followed by several 

interrupted reboots, or by clean shutdowns, the error condition persisted until software “consumed” it.  

This LSS flow is shown in Figure 2-2 below. 
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Figure 2-2. Utilizing the Last Shutdown Status state 

 

 

 

To illustrate why a single flag like the LSS is too simplistic, imagine that the server has multiple virtual 

machines running on it, as shown in the above figure.  Both virtual machines (shown as “Guest VM A” 

and “Guest VM B”) are storing persistent memory files on the DCPMM attached to the machine.  The 

interleave set on the lower right experiences a dirty shutdown and indicates this using the LSS.  When 

does the LSS get cleared in this situation?  The figure shows Guest VM B detecting the dirty shutdown 

and reacting by clearing the LSS on the DIMM.  Later, Guest VM A starts up, as shown in Figure 2-3 

below. 
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Figure 2-3. Limitations with the Last Shutdown Status state 

 

Guest VM A doesn’t see a dirty shutdown because the other guest has cleared the condition.  Adding 

more virtual machines, considering some of them to be running and some stopped, and considering 

multiple clean and dirty shutdowns causes this solution to fall apart in complexity. 

Since the initial design for detecting dirty shutdown was the LSS, the Intel DCPMM implementation 

provides support for a LSS bit that is used by the BIOS for accurately reporting the NFIT Memory Device 

State flag Bit 2, as required by ACPI.  The recommendation at the OS and application level is to use the 

dirty shutdown count mechanism instead.  Instead of a single bit, the DSC is incremented every time the 

DIMM experiences a dirty shutdown.  As far as the application is concerned, no latching is done and no 

“re-arming” of the counter by software is required.  The way an application uses the DSC is described in 

the next section. 

 Application utilization of the DSC 
Making use of the DSC in a pmem-aware application requires some additional start-up logic in the 

application, or in libraries like those provided by PMDK.  The operating systems provide the basic 

infrastructure for finding the DSC for the physical DIMM devices, and when multiple DIMMs are 

interleaved together by the memory controller, a logical DSC is created by adding the physical DSCs 

together, so that any number of DIMMs in an interleave set can experience a dirty shutdown and the 

DSC for the entire interleave set will increase as a result.  The calculation of the logical DSC happens at 

the application or library level, not at the OS level.  See the OS specific implementation section for more 

specifics. 

The following figure outlines the basic high-level SW stack for the DSC feature. 
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Figure 2-4. SW Stack for Dirty Shutdown Count  

 

 

The following outlines the application responsibilities and possible implementation suggestions: 

1. The application first creates its pmem file with some metadata stored in the header: 

a. The application retrieves the current DSC for each physical DIMM being used, using an 

OS-specific method such as a /sys file, or an IOCTL. 

b. The application calculates the current logical dirty shutdown count (LDSC) as the sum of 

the DSC for all physical DIMMs that make up the logical volume the pmem file resides 

on. 

c. The application stores the current LDSC in its metadata in the pmem file 

d. The application determines GUID or UUID for the logical volume the pmem file resides 

on and stores this in its metadata in the pmem file. 

e. The application flushes this information to ensure it is persistent.  If supported by the 

OS, the application can use a deep flush operation here so that the metadata used to 

detect dirty shutdowns is itself more resilient against dirty shutdowns.  (Deep flush is 

part of the pmem programming model and flushes stores to smallest failure domain 

available to software.) 

 

2. Each time application runs & retrieves its metadata from the pmem file: 

a. The application checks the UUID saved in its metadata with the current UUID for the 

logical volume the pmem file metadata resides.  If they match, then the LDSC is 

describing the same logical volume the app was utilizing and can proceed to checking 

the LDSC.  If they do not match, then the LDSC is for some other logical volume and no 

longer applies (i.e. the file was copied to a different volume), so no further action is 

required since there’s no information available to detect a dirty shutdown in this case. 

b. The application calculates the LDSC. 
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c. The application compares the current LDSC calculated with the saved LDSC retrieved 

from its metadata in the pmem file. 

d. If the current LDSC != saved LDSC then the DIMM has detected a dirty shutdown and 

possible data loss.  It is up to the application to determine if it is possible writes to the 

file were outstanding.  For example, the application can maintain a “clean” flag in its 

metadata in the pmem file that the above checks only happen if the file was open for 

writing during the last system crash. 

e. If the application determines a dirty shutdown happened, it performs an application-

specific recovery action, such as exiting with a fatal error and telling the user the file 

needs to be restored from backup.  Of course, a more sophisticated application could 

repair or recover the pmem file from redundant information itself. 

 

The following figure outlines the application starting, determining the current LDSC has incremented 

beyond its saved LDSC.  

Figure 2-5. Utilizing the Dirty Shutdown Count 

 
 

 Limitations of the architecture 
Here are the known limitations of the optional DSC architecture and current implementations.  This 

section is likely less interesting to application developers and more interesting to OS and platform 

vendors. 

1. While the DSC mechanism can be utilized for OS kernel components, file systems, and 

applications, the intended architecture described here focuses on detection of a dirty 

shutdown for an application.  OS kernel and file system components currently do not utilize 

the DSC to harden themselves to recover if they were writing when a DSC increment occurs.  If 
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those components do not utilize persistent memory themselves, there is no reason those 

components should look at the DSC.  If kernel components are utilizing persistent memory, 

they can optionally elect to store their own version of the DSC and utilize it as suggested here 

for applications.    

2. While the ACPI specification covers the reporting of an unlatched DataLossCount through the 

_NBS interface, for any NVDIMM in the ACPI0012 device tree, the consumption and use of the 

DataLossCount by the OS is optional and not standardized within the ACPI spec.  The lack of a 

common OS response to the DSC can be considered a limitation of the ACPI specification that 

will be addressed in future ACPI specification updates, driven through the NVST ACPI NVDIMM 

work group. The use of DSC in the OS kernel varies across OS vendor so please see the 

following OS specific implementation details section for OS specific limitations.  Please 

contact your OS vendor directly for the latest details on their specific implementation. 

3. Logical storage volumes made up of interleave sets of NVDIMMs that have no files on them 

(and thus no application use of the storage) or files that were copied to a temporary storage 

location (and no longer associated with an application), will not have an entity checking the 

DSC on that volume.  If the OS kernel components do not consume the DSC then this 

limitation exists.  If the DSC were incremented, no one would be listening for it.  Any 

consumer of the DSC, whether application or kernel component can protect itself from 

movement of its DSC metadata to another location by also tracking the location (i.e. volume 

UUID) the DSC was calculated for.  
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3 OS specific implementation details 
The following section outlines the differences in the OS implementations of DSC and is considered 

accurate at the time of this document update. 

 ESX 
VMware ESX will make use of the ACPI _NBS interface which internally still utilizes the DCPMM SMART 

LDSC.  As far as the OS is concerned, this is an unlatched DSC mechanism.  Please contact VMware for 

more information on the ESX implementation of DSC. 

 Linux 
 

The Linux kernel treats the dirty shutdown counter similar to how it handles "deep flush", namely a 

mechanism outside the data consistency model of a typical Linux filesystem. It assumes that the sources 

of ADR failure need to be accounted for in the platform thermal and power design not actively mitigated 

in the OS kernel. To that end the dirty-shutdown count is not consumed by the Linux kernel and only 

exported to applications. Specifically, the kernel is more likely to disable the optimized persistent 

memory programming model as a mitigation for frequent dirty-shutdowns than add filesystem 

consideration of the DSC. 

Setting this consideration of kernel's handling, or non-handling as it were, to the side, here are the 

details of how the counter is exposed to applications and how it is consumed by helper libraries like 

PMDK to let applications validate data consistency: 

At driver initialization time the kernel will harvest the raw SMART LDSC from the BIOS 

DSM.GetSmartHealthInfo API (an Intel-specific DSM, other platforms may differ) for each NVDIMM and 

store a cached copy in sysfs for use by libndctl.  The ndctl library provides an interface, 

ndctl_dimm_get_dirty_shutdown(), that allows applications to retrieve the cached DSC for an NVDIMM.  

It is left up to the application to determine the logical count associated with its pmem file location, 

determine when the DSC increment is important to the application, and how to handle the data 

recovery when the application was writing during a DSC increment.  The kernel provides no other 

support for DSC handling. 

PMDK library users will get the DSC checking as part of the core error handling of the PMDK libraries.  

There is no need for applications utilizing PMDK to also look at the DSC on their own.  The DSC and UUID 

of the pmem files are protected by the PMDK DSC implementation as outlined in the application 

sequences above. 

 

The following figure outlines this Linux specific DSC support. 
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Figure 3-1. Linux DSC implementation 

 

 Windows 
The Windows persistent memory stack will harvest the raw SMART LDSC from the BIOS 

DSM.GetSmartHealthInfo API for each NVDIMM.  If the DSC has incremented, the physical NVDIMM is 

marked as Unhealthy. Any logical disks associated with that NVDIMM are also marked as Unhealthy, 

with an operational status reason indicating a potential data loss. Windows places those logical disks in 

read-only mode to warn the user about a possible issue with the NVDIMM. If the user wants to write to 

the logical disk, they must run the “Reset-PhysicalDisk” PowerShell cmdlet on the affected logical disk, 

and then offline and online the volumes on the disk. The logical disk remains read-only until the user 

runs that cmdlet, even after reboots. 

Applications can query the logical disk’s DSC by sending IOCTL_STORAGE_QUERY_PROPERTY with 

StorageDeviceUnsafeShutdownCount (defined in ntddstor.h) to the logical disk or volume stack.  

At the time of this writing, the DSC information is not yet exposed to user space in Windows, so the 

PMDK checking of DSC is not yet available.  This is expected to change in a future version of Windows. 
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4 Intel DCPMM specific 
implementation details 
The following figure outlines the interfaces and data provided by Intel’s DCPMM and the BIOS that are 

relevant to DSC. 

Figure 4-1. Intel DCPMM specific support of DSC 

 

DCPMM Interfaces 

The Intel DCPMM implementation is broken into specific interfaces for supporting DSC include the 

following: 

1. Latched LSS and DSC implementation: 

a. The Intel DCPMM supports a full synchronous latching mechanism to allow an OS to 

precisely control when the DCPMM is enabled for latching of the LSS and DSC.  If the OS 

does not enable the latch, the current state of the LSS and DSC does not change.  The 

interface to this data on the Intel DCPMM is through the 

GetLogPage.SMARTHealthInfoPage and GetAdminFeatures.LatchSystemShutdownState 

NVDIMM mailbox commands. 

b. The support for LSS is only utilized by the BIOS ACPI NFIT NVDIMM State Flags Bit 2 

implementation where a simple state of the last shutdown is reported.  Because of the 

limitations of using a flag instead of a count, it is not intended for use by applications.    

2. Unlatched DSC implementation: 
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a. The Intel DCPMM support an unlatched DSC that always increments on any dirty 

shutdown without any latching required.  Due to internal differences in how the 

DCPMM handles the unlatched shutdown relative to latched shutdowns, it is not utilized 

in any native interfaces for the OS.    

b. WARNING: Intel does not advise using the 
DCPMM.SMARTHealthInfoLogPage.IntelVendorSpecificData.UnlatchedDirtyShutdownCount to 

make platform shutdown clean/dirty decisions.  There are cases where this count can 

increment on the next boot, resulting in a false positive.  If power is removed from the 

DCPMM before it has reached MRC & training complete, the unlatched DSC will 

increment on the next boot.  This data is often valuable for debug and triage so the 

unlatched data can be logged but the BIOS and OS components should not be making 

platform shutdown clean/dirty decisions based on this count.  This window at the 

beginning of boot, where a false positive can occur, is not possible with the latched 

variant of the DSC since the latch is not enabled until the DCPMM has reached 

training/MRC complete.  See the BIOS Enabling of the Latch details below on when the 

latch is enabled in the Intel implementation. 

 

BIOS Interfaces 

The Intel BIOS implementation is broken into specific interfaces for supporting DSC include the 

following: 

1. Latched LSS and DSC implementation: 

a. The Intel BIOS supports reporting the state of the DCPMM SMART.LSS in the 

ACPI.NFIT.NVDIMMRegionMappingStructure.NVDIMMStateFlags.Bit[2].  This is a static 

value written into the NFIT at BIOS initialization time and does not get updated until the 

next system reset or reboot. 

b. The Intel BIOS supports the following pmem.io specified DSMs for reporting the DSC to 

an OS component using DSM.GetSmartHealthInfo, DSM.PassThrough (requires building 

a GetLogPage.SMARTHealthInfoPage mailbox command) and 

DSM.EnableLatchSystemShutdownState. 

c. The Intel BIOS will enable the Latched LSS and DSC implementation by enabling the LSS 

latch on every boot.  This is to cover the Linux OS which does not enable the latch at the 

beginning of time and VMware ESX which only supports an unlatched DSC 

implementation and is expecting the platform to enable the latch at the appropriate 

time.    

d. The Intel BIOS will report the latched DSC through the ACPI specified 

_NBS.DataLossCount interface.  See the ACPI V6.3 for the interface details.  Since the 

BIOS is enabling the Latch for the OS, it is safe for the same latched DSC to be utilized in 

reporting _NBS.DataLossCount.  It is not possible for the _NBS API to be executed until 

after the BIOS has enabled the latch.  This allows all OS implementations to utilize the 

same heavily verified latched DSC path, independent of whether the OS supports a 

latched DSC or unlatched DSC mechanism. 

2. Unlatched DSC implementation: 

a. There are no native BIOS ACPI interfaces that expose the unlatched DSC.   While 

intended to be an unlatched interface, the ACPI specified _NBS.DataLossCount interface 

file://///pmem.io.DSM.GetSmartHealthInfo
file://///pmem.io.DSM.PassThrough
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returns latched DSC content, in the Intel implementation, and is covered in the latched 

DSC discussion above. 

b. The BIOS.NvmCtlrGetPlatformInterpretedUnlatchedDsc interface was inspecting only 

unlatched SMART data so cannot reliably report a clean shutdown, exposing the caller 

to false positive count increment.  This API is not present in the DCPMM UEFI Protocol. 

BIOS Enabling of the Dirty Shutdown Count (DSC) Latch: 

The Intel BIOS implementation requires the enabling of the LSS Latch to cover VMware ESX and Linux 

OS, which do not enable the latch on their own.  Intel recommends the following for the BIOS 

implementation that enables the latch: 

• The BIOS shall enable the latch AFTER the DCPMM has reached MRC complete phase and 

BEFORE handing off boot execution to the OS Boot Loader.   

• The latch must be enabled before any OS/host/application write transactions can occur. 

• MRC complete is reached at the point the BIOS has initialized the DCPMM and DDRT training 

has been completed.  This occurs once the SetAdminFeatures/DDRTIoInitInfo mailbox 

command has executed successfully and DCPMM has returned successful status.  The latch 

must be enabled after the DCPMM has completed training.  Enabling the latch before this 

point could lead to false incrementing of the Latched DSC. 

 

BIOS Disabling of the Dirty Shutdown Count (DSC) Latch: 

The Intel DCPMM products require the latch to be disabled during the Warm Reset restart flows to 

prevent the LDSC incrementing as a false positive.   

• A false positive increment in the LDSC can occur if the DCPMMs have initialized but the IMC 

memory controller is still initializing.  During this 5-10 second window where the IMC is not 

ready, any power transitions that require ADR will result in a dirty shutdown count 

increment because the IMC ADR signals will not come through to the DIMM. 

• To prevent the incorrect increment in the DSC during this window, the Intel BIOS will disable 

the latch when coming back up, after handling a CF9 slow or fast warm reset flow. The BIOS 

CF9 handler has executed the HW CF9 reset flow, HW has completed handling of the reset, 

and the reset vector will allow the preMRC BIOS to disable the latch using the SMBUS 

mailbox command.   

o By waiting for the CF9 HW flow to complete, all previous writes from the OS and 

Applications have been completely flushed from the IMC’s WPQs to the DCPMMs 

persistence domain while the latch was enabled.  This insures that any failure in the 

WPQ flush path would cause an increment in the DSC on the next boot. 

o By disabling the latch as early as possible in the BIOS warm boot path, this will 

insure that the latch is disabled during the critical window where the IMC is not 

ready, preventing a false positive increment of the DSC. 


