

NVDIMM Block Window

Driver Writer’s Guide
Example NFIT-Based NVDIMM

Block Window and Persistent Memory Interface Guide

July 2016

 NVDIMM Block Window Driver Writer’s Guide

2

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis

concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any

patent claim thereafter drafted which includes subject matter disclosed herein.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the

latest Intel product specifications and roadmaps.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your

system manufacturer or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or

systems or any damages resulting from such losses.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this

document.

The products described may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request. Copies of documents

which have an order number and are referenced in this document, or other Intel literature may be obtained by

calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the

United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2015, 2016, Intel Corporation

http://www.intel.com/design/literature.htm

NVDIMM Block Window Driver Writer’s Guide

 3

Contents

Revision History ... 5

Introduction .. 6

Document Scope .. 6

Related Documents .. 6

Terminology ... 7

NVDIMM Architecture ... 9

Proposed NVDIMM Software Architecture .. 9

NVDIMM Driver.. 10
Block Window Interface - Error Flow Requirement ... 10
Block Window Interface - SW RAID Requirement ... 11
Block Window Interface – Power-Fail Write Atomicity Requirement 11

NVDIMM Labels, Namespaces, and BTTs .. 12
Namespace Labels ... 12
BlockNamespaces .. 12
PmemNamespaces .. 13
BTTs ... 13

Persistent Memory-Aware File Systems and Applications ... 13

NVDIMM Management Operations ... 13
Pass-through IOCTLs .. 14
IOCTLs & /sys Interfaces to Retrieve Driver-Managed Information 14
IOCTLs to Create, Delete, or Modify Driver Managed Information 14

Interfacing with NFIT-Based NVDIMMs .. 15

NFIT Parsing ... 15
Creating Internal Interleave Tables ... 18
Determining BW Control and Aperture Resources.. 19

NVDIMM Driver Device Discovery .. 20

ADR .. 21
Determining ADR Success ... 21

WPQ Flush and ACPI NFIT Flush Hint Addresses .. 22

Issuing DSM Commands to the NVDIMM .. 23

Block Windows ... 24
Block Window Register Definition ... 25

 NVDIMM Block Window Driver Writer’s Guide

4

Calculating Register SPA and Virtual Addresses .. 27
Memory Controllers, Channels, Multi-Way Channel Interleave.. 28
Interleaving with Persistent Memory .. 29
NVDIMM HW Register SPA and Virtual Address Calculation... 29
Virtual Address Calculation with Interleave .. 30
Virtual Address Calculation without Interleave ... 33
Block Window Aperture Programming .. 34

Basic Driver Storage Mode Block Execution Flows ... 36
Block Read ... 37
Block Write .. 38
Block Flush ... 38

Figures

Figure 1 – Basic NVDIMM Software Architecture .. 9

Figure 2 - NFIT Layout ... 16

Figure 3 - BW Command and Address Register Format ... 26

Figure 4 - BW Status Register Format .. 26

Figure 5 – BW Aperture Register Format ... 27

Figure 6 - Memory Controller Topology ... 28

Figure 7 - Memory Controller Interleave ... 29

Figure 8 – Virtual Address Calculation with Interleave .. 32

Figure 9 - Virtual Address Calculation without Interleave 33

Figure 10 - Block Window Programming Sequence ... 34

Tables

Table 1 - Related Documents .. 6

Table 2 - Terminology .. 7

NVDIMM Block Window Driver Writer’s Guide

 5

Revision History

April 2015

 Initial pmem.io public document release

July 2016

 Updates to remove references to PCOMMIT which is now a deprecated
instruction

 Addition of ADR, ADR Domain, CLFLUSHOPT, CLWB, Flush Hint Address,

NVDIMM Durability Domain, WPQ Flush and removal of PCOMMIT from

terminology section. Made it clear that Flush Hint Addresses are optional and
that the driver cannot perform a flush if this addresses are not found in the
ACPI NFIT tables and does not need to perform some other function to replace
those flushes.

 Updated Persistent Memory-Aware File Systems and Applications section to
remove PCOMMIT and add flushing of cpu caches to the ADR Domain

 Added ADR and WPQ Flush sections to outline the details of these features

 Updated the NFIT Parsing section to fix the NFIT Diagram and description of
driver responsibilities for finding the correct Flush Hint Descriptor table

 Block Read and Write Sequences updated to remove PCOMMIT/SFENCE steps
and add missing WPQ Flush steps

 Add note on when BW Status Register is cleared
 Fixed broken document cross-references

 Updated version info for related ACPI, DSM, and Namespace documents

 Fixed inaccuracies in NVDIMM SMART data retrieval and clarified that retrieval
and interpretation of NVDIMM SMART payload is not directly compatible with
existing T10/T13 standardized SMART data

 NVDIMM Block Window Driver Writer’s Guide

6

Introduction

Document Scope

This document is targeted to driver writers for NVDIMMs that adhere to the NFIT

tables in the Advanced Configuration and Power Interface (ACPI) V6.1 specification,

the Device Specific Method (DSM) V1.3 specification and the NVDIMM Namespace

Specification V1.0. This document specifically discusses the block window HW interface

and persistent memory interface that Intel is proposing for NVDIMMs. These interfaces

are utilized in the released Linux NVDIMM driver stack.

Related Documents

This document depends heavily on the documents listed in Table 1. Where possible,

this document will call out specific references to these documents.

Table 1 - Related Documents

Title Description

Advanced Configuration and

Power Interface Specification

(ACPI) V6.1

This document describes the ACPI specified NVDIMM Firmware

Interface Tables (NFIT) that the BIOS builds to describe NVDIMMs,

including NVDIMM interleave information, and how the DIMMs are

mapped in to system physical address space. Available through the

UEFI.org website.

Device Specific Method (DSM)

interface proposal V1.3

This document describes the proposed interface between the NVDIMM

Driver and the ACPI SW stack for configuring, managing, and

enumerating NVDIMMs. Available through the pmem.io website.

NVDIMM Namespace Specification

V1.0

This document describes the proposed label mechanism used to sub-

divide the NVDIMM into BlockNamespaces and PmemNamespaces, as

described by Namespace Labels, including the Block Translation Table

(BTT) used to provide power-fail write atomicity. Included in this

specification are on-media structure definitions for labels and the

BTT, and rules for using those data structures. Available through the

pmem.io website.

NVDIMM Linux driver code

released by Intel

Intel has released NVDIMM Linux sample code that utilizes the

interfaces specified in this specification.

NVDIMM Block Window Driver Writer’s Guide

 7

Terminology

Table 2 - Terminology provides a glossary of terms used in this document.

Table 2 - Terminology

Term Description

ADR
Asynchronous DRAM Refresh – Chipset & CPU HW and motherboard routing that allows a

power supply to provide signaling to the chipset that system power has been lost. The

residual power supply capacitance is utilized by the HW to write outstanding data in the

ADR Domain to the NVDIMM’s Durability Domain.

The use of ADR is now required for support of NVDIMMs. The addition of ADR means

that applications no longer need to explicitly commit data to the NVDIMM when utilizing

App-Direct mode. For Storage Mode, drivers are still responsible for committing updates

to the BW Command register to the NVDIMM and committing write data moved through

the BW Aperture to the NVDIMM by utilizing the WPQ Flush feature.

ADR Domain
Write data that has made it to the Memory Controller is considered to be in the ADR

Domain and will be written to the NVDIMM durability domain by the ADR HW when

system power is lost.

BW Block Window. A set of registers consisting of a command register, a status register, and

an aperture allowing the NVDIMM driver to read and write blocks of data to any

persistent area on an NVDIMM.

BTT Block Translation Table. A software data structure, defined in the NVDIMM Namespace

Specification, which prevents torn blocks when a write is interrupted by a system crash,

hang, or power failure.

CLFLUSHOPT A performance-optimized version of the Intel® Architecture CLFLUSH instruction which

flushes a single cache line from the CPU caches to the memory controller, evicting the

content from the caches. This instruction is weakly-ordered, allowing multiple flush

instructions to occur in parallel.

CLWB New Intel® Architecture instruction to write back the current content of a cache line

from a cpu cache to the memory controller while leaving the content of the cpu cache

unchanged.

DPA DIMM Physical Address. An address within the memory in an NVDIMM.

External LBA The host OS logical block address passed to the driver in an IO request. This term is

used to distinguish between the LBA given to the driver, and where the actual IO

happens due to BTT translation.

Flush Hint

Address or

Descriptor

ACPI NFIT specified table containing uncached memory Flush Hint Addresses that the

driver writes to initiate a WPQ Flush sequence to a specific memory controller to force

write data in the memory controller to be written to the NVDIMMs durability domain. If

no Flush Hint Addresses are found by the driver it can be assumed that the driver does

not need to execute any special functionality to flush write data from the memory

controller to the NVDIMMs durability domain. See WPQ Flush below.

LBA Logical Block Address. IO requests to block devices are typically in terms of LBAs. For a

byte-addressable NVDIMM like the NVDIMMs, the LBA is converted into a byte offset.

NFIT The NVDIMM Firmware Interface Table, which defines the ACPI-like information created

by the BIOS to inform the OS about NVDIMMs in the system.

 NVDIMM Block Window Driver Writer’s Guide

8

Term Description

NVM Non-Volatile Memory

NVDIMM Non-Volatile DIMM. Non-volatile memory in a DIMM form factor.

NVDIMM

Durability Domain

The HW Domain where write data is considered durable and can tolerate a power failure.

This boundary is considered to be the NVDIMM controller HW.

NVDIMM

Namespace Label

Labels, stored at a known location on NVDIMMs, which define the DIMM’s contribution to

NVDIMM Namespaces. This is a software mechanism; the DIMM itself just sees the labels

as part of the overall data stored on the DIMM.

NVDIMM

Namespace

Similar to an NVMe Namespace or a Logical Unit (LUN) on a SCSI disk, this is a software

mechanism for managing ranges of persistence on NVDIMMs.

Persistent

Memory

Byte-addressable memory that retains its contents across power loss.

SPA System Physical Address. A physical address on the host operating system.

WPQ Flush

or Write Pending

Queue Flush

Mechanism utilized by the driver to flush any internal memory controller HW

queues/buffers of write data destined to the NVDIMM. The flush is initiated by the

driver by writing to specific uncached locations specified in the Flush Hint descriptors of

the ACPI NFIT Table. If no Flush Hint Addresses exist the driver does not issue the WPQ

Flush. See Flush Hint Address above.

NVDIMM Block Window Driver Writer’s Guide

 9

NVDIMM Architecture

The NVDIMM technology is the memory subsystem architecture for server platforms

incorporating next generation non-volatile memory (NVM) technology in the form of

an NVDIMM. The following sections introduce the basic proposed SW architecture

utilized by the sample Linux SW stack.

Proposed NVDIMM Software Architecture

The major components for the proposed NVDIMM software architecture are shown in

Figure 1 – Basic NVDIMM Software Architecture.

Figure 1 – Basic NVDIMM Software Architecture

The figure shows the NVDIMM at the bottom (systems can have multiple NVDIMMs).

Those DIMMs are described by the BIOS to the OS via the ACPI-defined NVDIMM

Firmware Interface Table (NFIT). The NVDIMM driver interfaces the OS application and

file system components to the NVDIMM. The NVDIMM driver utilizes the proposed

block window HW interface in the NVDIMM to move data to/from the persistent

memory and the data buffers utilized by the OS. This interface is described in detail in

Chapter 0 of this guide.

For applications to directly access persistent memory utilizing a standard byte

addressable load/store interface, the NVDIMM driver exposes the persistent memory

through a persistent memory-aware file system, or some other OS-specific

mechanism. Once persistent memory-aware applications have access to the persistent

memory region addresses, they can use the memory directly and perform loads and

stores without the need for an NVDIMM driver, minimizing or eliminating the file

system and storage overhead of the OS.

Block I/O Logic

Non-Volatile Memory

Persistent
Memory

FileBlockManagement

User
Space

Kernel
Space

Standard
File API

NVDIMM Device Driver

Application

File System

ApplicationApplication

Standard
Raw Device

Access

Load/Store

Management Library

Management UI

Standard
File API

Persistent
Memory Aware

File System

MMU
Mappings

Cache
Line I/O

NVDIMM

 NVDIMM Block Window Driver Writer’s Guide

10

NVDIMM Driver

The combination of all of the components that implement the block window and

persistent memory interfaces to the NVDIMM hardware are collectively called the

NVDIMM driver. The NVDIMM block window interface described in Chapter 3 and the

NVDIMM driver are designed to meet the following basic high-level requirements:

 Manage all NVDIMMs with a single driver instance – An NVDIMM-aware platform

BIOS creates a single NFIT that the NVDIMM driver is loaded against. This single

driver instance is expected to manage all of the NVDIMMs in the system.

 Support traditional OS storage stacks through the block window interface:

 Direct attached SSDs - The NVDIMM Namespace Specification describes the

NVDIMM namespace labels that are created from free space on the NVDIMM

and are stored in a reserved namespace label data region on each NVDIMM. For

block window regions of persistent memory, each NVDIMM namespace label

describes one NVDIMM BlockNamespace or a portion of a BlockNamespace if the

namespace is broken in to multiple, non-contiguous portions. Each

BlockNamespace can be surfaced by the driver or other kernel components to

the OS as an SSD direct-attached disk, interfacing with the rest of the

traditional OS-specific block storage stack.

 Support for Existing SW RAID implementations – See the section below on how

the block window HW implementation allows the use of traditional SW RAID

stacks with NVDIMMs.

 Provides traditional block storage driver error model – See the section below on

how the NVDIMM block window HW architecture allows non-traditional DIMM

errors to be routed to the storage stack and why that is important to system

robustness.

 Optional single-sector power-fail write atomicity – The NVDIMM Namespace

Specification outlines the Block Translation Table (BTT) metadata that is stored

on the NVDIMM. The BTT provides single-sector write atomicity by

implementing a write LBA indirection system. See the section below that

explains the importance of this feature to traditional OS storage stacks.

 Multiple logical block-size support including 512, 520, 528, 4096, 4160, and 4224

byte block sizes that support embedded metadata in each block, like DIF/DIX.

 NVDIMM management support

Most of the above requirements are self-explanatory, but a few key requirements

deserve more detailed explanation:

Block Window Interface - Error Flow Requirement
The way errors propagate is quite different between storage and memory. Storage

errors are typically propagated up the storage stack where components like SW RAID

or applications themselves can react to them. Memory errors are often handled

transparently to applications and in many cases can cause the system to crash if it is

deemed unsafe to continue. One feature of the proposed NVDIMM block window HW

interface is that errors are returned to the NVDIMM driver instead of being exposed as

NVDIMM Block Window Driver Writer’s Guide

 11

memory errors. Using a block window status register, the NVDIMM driver checks for

errors after each block IO and propagates any errors as a block error through normal

storage stack means. Without this HW support, storage mode errors would appear as

memory errors instead of block storage errors, causing many systems to crash due to

memory errors in kernel space, reducing overall system robustness.

Block Window Interface - SW RAID Requirement
In addition to the need to propagate errors to SW RAID as described above, it is also

important for SW RAID to correctly understand the RAS boundaries of the underlying

storage. The NVDIMM block window HW interface allows blocks to be placed directly

on NVDIMMs, regardless of any memory controller-based interleaving currently in

effect. The combination of this HW feature, memory error reporting on block transfers,

and support in the driver allows SW RAID stacks to work correctly on NVDIMMs. The

block window HW interface combined with NVDIMM BlockNamespaces provides the

same level of SW RAID functionality as with separate discrete SSDs.

Some SW RAID examples include:

Redundancy - By isolating NVDIMM BlockNamespaces to specific NVDIMMs, RAID

features such as RAID-5 can be used across NVDIMMs to provide data protection.

Capacity Aggregation - Since the maximum NVDIMM BlockNamespace capacity is

limited to the size of the NVDIMM, this capacity limitation with smaller NVDIMMs can

be overcome using SW RAID to stripe together multiple NVDIMM Namespaces to

create a larger virtual volume.

Block Window Interface – Power-Fail Write Atomicity Requirement
A typical SSD will maintain some sort of error correcting code (ECC) on each block in

order to detect data corruption. If the system loses power during a write to an SSD,

these results are possible (listed from most commonly implemented to least

commonly implemented):

 The sector completely contains the old data, or completely contains the new data.

This happens when the SSD provides power-fail write atomicity. Many SSDs do

this, at least for writes of 1 sector (it is a requirement of the NVM Express

Specification, in fact).

 The sector is torn by a power failure, so the data is corrupt. But the ECC indicates

the data is corrupt, so an error results when reading that sector.

 The sector is torn, but the ECC is somehow correct. So when SW reads the sector, a

corrupt sector containing some old data and some new data is read. Since no error

is indicated, this is silent data corruption. This has been reported on some HDDs

and on early SSDs, but is quite rare, perhaps impossible, on modern SSDs. Most file

systems and applications do nothing to detect this case (notable exceptions are

check summing file systems like ZFS, btrfs, and ReFS).

The case of the torn write is particularly interesting for NVDIMMs. While each write to

the DIMM is done using a store instruction, and store instructions to NVDIMMs are

power-fail atomic, a block of data that incorporates a number of atomic store

instructions will not result in an ECC error on a block, if power is lost in the middle of

updating that block. The block will contain some new data, whatever had been stored,

and the rest of the old data, but nothing to indicate a corrupt block. Because this

causes a silent data corruption on many file systems and applications, it is a

 NVDIMM Block Window Driver Writer’s Guide

12

requirement that the driver provide at least single block power-fail write atomicity.

This requirement is implemented through the use of BlockNamespaces that contain a

BTT in the NVDIMM metadata layout and is discussed in some detail below.

NVDIMM Labels, Namespaces, and BTTs

The following sections provide a high level description of the key elements of the

NVDIMM on media metadata layout and architecture. These components include

Namespace Labels, BlockNamespaces, PmemNamespaces, and BTTs (Block

Translation Tables). The NVDIMM Namespace and BTT formats are OS-independent

and are described in full detail in the NVDIMM Namespace Specification.

Namespace Labels
Each NVDIMM namespace is described by a set of namespace labels that reside on

each NVDIMM contributing to the namespace in a reserved area called the namespace

label data area. The driver is responsible for maintaining the namespace labels that

describes the namespaces. Since each NVDIMM can contain multiple labels, each

NVDIMM can therefore contain multiple namespaces. The labels describe the DIMM

physical address (DPA) and range of that portion of the namespace on that given

NVDIMM. Namespace labels are not interleaved across multiple NVDIMMs.

BlockNamespace labels on a given NVDIMM describe one or more BlockNamespaces.

Since BlockNamespaces do not need to be contiguous, multiple BlockNamespace

labels can be linked together on a given NVDIMM to describe a large logically

contiguous region that is not physically contiguous on the NVDIMM. Drivers must

account for any interleaving in affect when programing the block window HW

interface, as described more in following sections.

PmemNamespace labels on a given NVDIMM describe that NVDIMM’s portion of the

interleave set utilized for the PmemNamespace. The driver typically does not need to

understand the interleaving that is in affect for these namespaces.

BlockNamespaces
The NVDIMM Namespace Specification defines a BlockNamespace as a logical unit of

storage conceptually similar to a standard disk drive, SSD, or SCSI LUN. A

BlockNamespace is composed of ranges of persistent memory from one NVDIMM

device. BlockNamespaces have a single logical block address (LBA) space that is

numbered from 0 through (N – 1), where N is the number of logical blocks in the

namespace. BlockNamespaces are created on regions of the NVDIMM that are enabled

for persistent memory and start at high DPAs and grow down to minimize collisions

with PmemNamespaces that start at low DPAs and grow up. BlockNamespaces can be

created in portions of the persistent memory region that have an interleave set

defined as long as no PmemNamespace is currently defined on the NVDIMM in that

portion of the interleave set.

The driver is ultimately responsible for surfacing each valid BlockNamespace to the

operating system as a separate device. When interfacing to the OS’s storage stack,

the BlockNamespace is usually in the form of a SCSI disk or LUN.

NVDIMM Block Window Driver Writer’s Guide

 13

PmemNamespaces
The NVDIMM Namespace Specification defines a PmemNamespace as a container for a

portion of the system physical address space that has been mapped by the BIOS

across one or more NVDIMMs grouped together in an interleave set. These

PmemNamespaces tell the driver how much of the interleave set is used, leaving the

remaining space for use with BlockNamespaces. The driver is ultimately responsible

for surfacing each valid PmemNamespace to the OS as a separate device. Other OS

SW components typically utilize these devices to create a persistent memory-aware

file system. PmemNamespaces start at the low DPA of each NVDIMM and grow up to

higher DPAs, minimizing collisions with BlockNamespaces that start at high DPA and

grow down.

BTTs
Block Translation Tables (BTTs) are a software mechanism for providing power-fail

write atomicity for NVDIMMs that do not have HW power-fail write atomicity available.

As described in the previous section, providing power-fail write atomicity for a single

block write is a block window requirement. This requirement is met using a BTT that

maintains a small pool of free blocks used for writes. The BTT metadata and

algorithms for using it are described fully in the NVMDIMM Namespace Specification.

Persistent Memory-Aware File Systems and Applications

A persistent memory aware-file system, kernel modules, or applications that wish to

make use of byte-addressable persistent memory need to interface with the NVDIMM

driver to obtain a list of PmemNamespace ranges that the driver has found through

enumerating the NVDIMMs namespace labels directly. The SNIA NVM programming

model specification calls out this action as getranges but the actual API name or

method utilized is implementation-specific. Once the persistent memory-aware file

system or kernel components get the physical ranges associated with a

PmemNamespace, they need not ever call back to the NVDIMM driver to perform IO.

Persistent memory-aware applications can execute direct load and store instructions

to the virtual addresses of the persistent memory regions of each PmemNamespace

and are responsible for flushing cpu caches to the ADR Domain of the system (utilizing

CLFLUSHOPT or CLWB instructions) after writing new data.

On behalf of the application, the ADR HW logic will guarantee (with some well-known

limitations) that all write data that the application has flushed to the ADR Domain is

written to the NVDIMM Durability Domain in the event of a power loss.

NVDIMM Management Operations

An important function of the NVDIMM driver is to provide the appropriate interfaces to

NVDIMM manageability SW. This interface provides methods to find, create, modify

and delete BlockNamespaces and PmemNamespaces through management of the

namespace labels (as described in the NVDIMM Namespace Specification), gather

SMART and health information, and a number of other functions. Refer to the specific

NVDIMM management specifications for details on the specific interfaces that the

NVDIMM driver should implement.

 NVDIMM Block Window Driver Writer’s Guide

14

The management interface is composed of a number of IOCTLs that fall in to several

categories:

Pass-through IOCTLs
These are management requests whose inbound and outbound payloads, commands,

and status are created and handled by the management applications and the

NVDIMM. The NVDIMM driver should validate the buffer for sufficient input and output

length for these requests and route the IOCTL to the vendor-specific command DSM

mechanism described in this guide and the DSM specification. The NVDIMM supports a

command effect log that reports to the driver all NVDIMM Opcode combinations

thatare supported by the NVDIMM, and a set of effect bits that describe the effects on

the NVDIMM subsystem when the command is sent to the NVDIMM. The NVDIMM

driver should retrieve the CommandEffectLog utilizing the GetCommandEffectLogSize

DSM method and the GetCommandEffectLog DSM method. The driver can then check

the vendor-specific command pass-through IOCTL payload opcode and handle the

reported effects or potentially reject the pass-through command if the NVDIMM driver

can’t guarantee system stability.

IOCTLs & /sys Interfaces to Retrieve Driver-Managed Information
In general, these IOCTL requests are from the management stack and are considered

“native” driver IOCTLs. They retrieve information including current namespace and

namespace label configurations, interleave set information, and driver capabilities. At

boot time the NVDIMM driver will utilize GetNamespaceLabelSize &

GetNamespaceLabelData _DSM commands to read Platform Configuration Data,

current Namespace Labels, BlockNamespaces and PmemNamespaces and cache the

data internally in the driver. In response to these IOCTLs, the driver should validate

the payload buffer for sufficient input and output length as well as completely

validating the inbound payload for illegal payload values. The driver uses internally

gathered data and context to fill in the output payload buffer and does not typically

use a DSM command in direct response to these IOCTLs.

IOCTLs to Create, Delete, or Modify Driver Managed Information
In general these IOCTL requests are from the management stack and are considered

“native” driver IOCTLs. They create or modify information like current

BlockNamespaces or PmemNamespaces, and namespace label configurations, etc. The

driver should validate the payload buffer for sufficient input and output length as well

as completely validating the inbound payload for illegal payload values. The driver

updates or modifies internally managed driver data and context utilizing the input

IOCTL payload buffer and does not typically use a DSM command in response to these

IOCTLs. One example where a DSM command is used in response to these IOCTLs is

the SetNamespaceLabelData DSM command, which is utilized by the driver when an

IOCTL to create, delete, or modify one or more BlockNamespaces or

PmemNamespaces is requested.

NVDIMM Block Window Driver Writer’s Guide

 15

Interfacing with NFIT-Based NVDIMMs

This section covers the NFIT and DSM interfaces necessary to produce an NVDIMM

block window device driver. The existence of the NFIT described in the ACPI

Specification exposes NVDIMMs, interleave sets, and SPA ranges that have been

mapped by the BIOS. The existence of the ACPI0012 Root Device is surfaced to the

OS via the ACPI stack and OSPM, and typically causes the OS driver to be loaded and

initialized. The initialization begins with the driver pulling the relevant information

from the NFIT, as described in the sections below.

NFIT Parsing

Refer to the NFIT in the ACPI specification and the following figure and discussion for

details on the structure of the NFIT, the descriptor tables it encompasses, and the

description of the specific fields. The NFIT is the primary means by which the

NVDIMM-aware BIOS describes the physical HW topology of the system, including the

number of nodes, the number of slots per node, the memory controllers per slot, and

the topology of the NVDIMMs. The topology of the NVDIMMs includes the interleave;

DIMM physical address (DPA); how they map to the system physical address (SPA)

space; block window command, status, and aperture register definitions; and the

unique NFIT device handle utilized with NVDIMM DSM commands.

 NVDIMM Block Window Driver Writer’s Guide

16

Figure 2 - NFIT Layout

Figure 2 - NFIT Layout shows the basic components of the NFIT in reserved ACPI

memory and the relationship of those components to each other. Note that the ACPI

namespace device that is created by the BIOS describes the location of the NFIT in

memory and is the device that the OS will load the NVDIMM driver against. This is in

place of a more traditional HW PCI function that a storage device would typically use.

The NFIT is composed of a number of descriptors that are all placed in ACPI reserved

memory space. The main NFIT table contains a list of NFIT table structures that are

supported. The driver will utilize this list to search through memory and find all of the

NVDIMM Block Window Driver Writer’s Guide

 17

descriptors that match each supported list. Each descriptor begins with 2 bytes of

table structure information that is used to find and enumerate all of the support

descriptors. See the NFIT figure above for the layout.

The following descriptors are linked together in the NFIT:

 Index Linked – System physical address range descriptor and memory device to

system physical address range descriptor tables are linked by the SPA range

description table index. The memory device to system physical address range

descriptor is linked to the interleave descriptors for each NVDIMM via the interleave

description table index. The NVDIMM control region descriptor, NVDIMM block data

window region descriptor, and memory device to system physical address range

descriptor are linked together via the NVDIMM control region descriptor table index.

 NFIT Device Handle Linked – The memory device to system physical address

range descriptor is linked to the flush hint descriptor table via the NFIT device

handle. The driver utilizes the NFIT device handle from the memory device to

system physical address range descriptor to find the flush hint descriptor containing

the same NFIT Device Handle.

In a system with multiple revisions of an NVDIMM implementation, the NFIT will

contain unique instances of all of the above descriptors utilizing different range

description table index, SPA range description table index, NVDIMM control region

descriptor table index, interleave descriptor table index, node controller ID, socket ID,

and memory controller ID. This allows different sizes and numbers of BW resources to

be used in the same system and allows new NVDIMMs to be added without altering

already established configurations.

The driver will create a number of derived resources based on the NFIT. See the

following sections for more details on how the driver will make use of this information.

Driver-derived NFIT information includes:

 Number of NVDIMMs present in the system - This is utilized throughout the

driver for initialization and enumeration of the NVDIMMs.

 Block Windows (BWs) – The NFIT NVDIMM block data window region descriptor

describes the starting offset, size, and number of BW data apertures on the

NVDIMM. The NFIT NVDIMM control region descriptor describes the starting offset,

size, and number of BW command and status registers present. See the NFIT figure

and further discussion below for more details.

 NVDIMM Block Window Driver Writer’s Guide

18

 Interleave Information – When utilizing the block window HW interface to move

data in/out of the DIMM, the interleaving of that portion of the DIMMs must be

understood and taken in to account. The NFIT interleave table will give the NVDIMM

driver the information needed to determine the internal memory controller

interleave in effect. Anytime the driver moves data with a BW aperture window, the

starting offset of the aperture must be adjusted to account for interleaving. Likewise

data movement larger than the smallest non-interleaved transfer size must take in

to account “holes” that must be left in the aperture window to insure the data is

only written to the NVDIMM being addressed. For details on handling memory

controller interleave, see the section on Programming Block Windows, Calculating

the System Physical Address (SPA).

Creating Internal Interleave Tables
One of the most important pieces of information that the driver will need to use for

the I/O path is the information found in the NFIT interleave tables. In general the

interleave information will be utilized for translating the DPA address offset of the BW

command, status, and aperture registers into a virtual address that the driver will

utilize to directly access the register while taking interleaving in to account. There is a

basic hierarchical sequence the driver uses to find and retain that information from the

various NFIT tables. Here is the basic NFIT enumeration sequence:

Find all of the NVDIMMs – Reference the NFIT system physical address range

description tables for address range type 2, control regions, and find the SPA range

description table index. Then reference all of the memory device to system physical

address range mapping tables that have the same SPA range description table index.

The interleave ways for any of the matching memory device to system physical

address range mapping tables will be the number of NVDIMMs in the system. Since

each NVDIMM will utilize separate control register regions, this count can be used as

the number of NVDIMMs in the system.

Organize by Range Type - The driver enumerates each of the SPA range description

tables and organizes the data by the address range type that each range describes.

Type 1 ranges describe persistent memory and will need to be utilized for persistent

memory accesses. Address range type 2 tables describe the ranges used for the BW

command and status registers. Type 3 ranges describe the block window aperture

registers. For each address range type the driver uses the start address and length to

map the given physical region that the BIOS has set up in to the system virtual

address space of the operating system. Additionally, the driver needs to keep track of

the SPA range description table index for each range as this is used to find the

interleave table pertaining to this NVDIMM.

Find Memory Device to SPA Range and Memcontroller ID – Using the SPA range

description table index enumerate the memory device to system physical address

range mapping tables that contain a SPA range description index that matches the

indexes found in the previous step. This table describes the NVDIMM in detail including

the memory controller ID. The driver must also save the InterleaveWays field

contained in each of the memory device to SPA range mapping table copies as this will

be utilized directly in determining the virtual addresses of the NVDIMM registers.

Lastly, the driver uses the contained interleave description table index to find the

interleave table that describes this NVDIMMs location in the interleave of the memory

controller.

NVDIMM Block Window Driver Writer’s Guide

 19

Save the Interleave LineSize, NumLines, and LineOffset[] – Using the

interleave description table index, find all of the Interleave Tables that are present for

each NVDIMM participating in each address range type. The important information in

the interleave table is the NumLines, the LineSize, and the LineOffset[] array as

described. These values will all be required to calculate the virtual address for a given

register DPA address offset.

Create In-Memory Virtual Address Translation Table – It is recommended that

the driver pre-calculate the BW command, status, and beginning aperture virtual

address at driver initialization time. See the section on programming block windows

for the details on how this per NVDIMM interleave information will be utilized by the

driver to calculate the virtual addresses used when accessing the block windows.

Determining BW Control and Aperture Resources
The NVDIMM driver searches through ACPI reserved memory to find the NVDIMM

control region description table header that identifies this table in memory. Once the

table has been located the driver determines the size, number, and location offset of

the BW control and status registers utilizing that descriptor table, specifically the size

of block control window, number of block control windows, block control start offset

fields. See Figure 4 to get an idea of what the table looks like. The descriptor also

defines the size of the address and status fields and their field offsets within those

registers, specifically, the size of address field in block control windows, size of status

field in block cntrol windows, the address field offset in block control window, and

status field offset in block control window fields.

The NVDIMM driver searches through ACPI-reserved memory to find the NVDIMM

block data window region description table header, which identifies this table in

memory. Once the table has been located, the driver determines the size, number,

and location offset of the BW aperture registers utilizing that descriptor table,

specifically the number of block control windows, block control start offset, size of

block control window, command register offset in block control window, size of

command register in block control windows, status register offset in block control

window, and size of status register in block control windows fields. See Figure 4 to get

an idea of what the table looks like.

By utilizing the NFIT to parse this information, the driver can avoid utilizing the

NVDIMM controller-specific mechanism to retrieve this information, making the driver

more portable and less specific to a particular NVDIMM controller implementation.

Note that with these NVDIMM descriptions each NVDIMM tilizes a unique vendor ID,

device ID, and revision ID will have a separate unique NVDIMM block data window

region and NVDIMM control region descriptor entries in the NFIT. This provides the

flexibility to support multiple revisions of NVDIMMs with different block window

characteristics in the same system.

 NVDIMM Block Window Driver Writer’s Guide

20

NVDIMM Driver Device Discovery

At system power-on, the BIOS detects and initializes all NVDIMM devices installed in

the system. The BIOS then creates the NFIT, which communicates appropriate details

on all installed NVDIMMs to the operating system.

During initialization, it is expected that the driver will utilize the NFIT for most

information and issue commands to each NVDIMM to collect the remaining necessary

information utilizing the DSM interface. For details, refer to the ACPI specification NFIT

section and the basic NFIT overview presented above. Here’s a list of the information

the driver would typically collect during initialization:

 Determining DPA Register Offsets – The driver reads the NFIT NVDIMM control

region descriptor and the NFIT NVDIMM block data window region descriptor to

obtain the offsets to all of the registers it will need to use to send BW commands,

apertures, and receive BW status. This information is used in the NVDIMM HW

register virtual address calculation described in detail further below in this

document.

 Determine NFIT Device Handle – The driver utilizes the device mapping to

system physical address range mapping table to find the NFIT device handle it will

need to utilize when sending NVDIMM commands via the DSM pass-through

mechanism specified in the NFIT.

 NVDIMM List - Determined from parsing the NFIT.

 NVDIMM Memory Controller interleave - Determined from the NFIT Interleave

Table. Note that the interleave affecting the BW registers of all installed DIMMs are

required by the driver.

 Size, Number, and Location of BW Control Registers – The driver parses the

NFIT NVDIMM control region descriptor to determine the size of the BW control and

status registers, the number of BW command and status registers supported by the

NVDIMM, and the starting offset of the BW control and status registers in the

NVDIMM register map. This information is utilized in the NVDIMM HW register

virtual address calculation described in detail further below in this document. The

NDIMM control region flag Bit 0 set to 1 is used as an indicator that the NVDIMM is

buffered and will set the pending bit in the BW status register until the data transfer

has completed.

 Size, Number, and Location of BW Aperture Registers – The driver parses the

NFIT NVDIMM block data window region descriptor to determine the size of the BW

aperture registers, the number of BW apertures supported by the NVDIMM and the

starting offset of the BW aperture registers in the NVDIMM register map. This

information is used in the NVDIMM HW register virtual address calculation described

in detail below in this document.

 Retrieving NVDIMM Namespace Labels – The driver will need to utilize the

native NFIT-specified DSM get namespace label data area size and get Namespace

Label Data Area methods to retrieve the Namespace Labels that are stored on the

NVDIMM. Additionally, the driver will need to use the native NFIT-specified DSM set

namespace label data area method when creating new or modifying existing

namespace labels on behalf of the storage management software.

NVDIMM Block Window Driver Writer’s Guide

 21

 Retrieving SMART Health Information and SMART Thresholds – The driver

can optionally use the native NFIT SMART and health information

GetSmartHealthInfo DSM method to retrieve per NVDIMM SMART status.

Asynchronous changes in SMART status on the NVDIMM can be detected by SW if

the NVDIMM is instrumented to generate an alert and the platform BIOS provides

an SMI handler to generate an ACPI SCI interrupt to report an ACPI NFIT Health

Notification event to SW. It is also possible for SW to poll for updated SMART

status by periodically issuing this DSM method to check for SMART status changes.

The driver can also optionally determine the current SMART thresholds that have

been set by utilizing the native NFIT GetSmartThresholds DSM method.

Clarification on SMART data: It is important to note that the NVDIMM SMART Data

payload returned by the NVDIMM does not map directly to T10 or T13 standardized

SMART data reported by SCSI, SATA, and NVMe storage devices. Also the

mechanism for retrieving SMART data from the NVDIMM is specific to the NVDIMM

and the memory subsystem it is connected to and requires SW to utilize an NVDIMM

specific mechanism to retrieve the SMART data. Since the payload and mechanisms

to retrieve the SMART data are NVDIMM specific, existing SW that interprets SMART

data for typical legacy storage devices would need to be updated to natively support

SMART with NVDIMMs.

 Address Range Scrubbing – The driver can use the native NFIT QueryAddress

RangeScrubCapabilities DSM method to determine if address range scrubbing (ARS)

is supported by the system. Additionally, the driver can start an address range

scrub to find poison locations in the range of the requested scrub by utilizing the

native NFIT StartAddressRangeScrub DSM method. Lastly, the driver can determine

if an ARS is in progress and retrieve the resulting error log for the platform when

the ARS completes by utilizing the QueryAddressRangeScrubStatus DSM method.

Note that these methods are all addressed to the root ACPI namespace device and

do not require an NFIT device handle. See the section on error handling for more

details on possible driver uses of these ARS commands.

ADR

The platform containing the NVDIMMs must utilize the ADR HW logic and appropriate

power supply to guarantee that all writes in the ADR Domain will be written to the

NVDIMM’s durability domain on a power failure. This logic is utilized for planned

power down sequences including warm reset, S3, S5, as well as unplanned loss of

power sequences.

Determining ADR Success

There are two mechanisms for SW to determine if an NVDIMM has successfully written

all outstanding write data in the ADR Domain to the NVDIMM’s durability domain on a

planned shutdown sequence or unplanned power lost sequence. See the V1.3 DSM

specification for details of these fields:

DSM SMART Health Info output payload LSS indicator: Last Shutdown Status

(LSS) will be set to 0 by the NVDIMM if the last shutdown was successful (a clean

shutdown) or will be set to non-zero if the last shutdown was un-successful (a dirty

shutdown).

 NVDIMM Block Window Driver Writer’s Guide

22

DSM SMART Health Info output payload Unsuccessful Shutdown Count: This

counter will be incremented by the NVDIMM each time an unsuccessful (dirty)

shutdown in recorded by the NVDIMM.

WPQ Flush and ACPI NFIT Flush Hint Addresses

If the platform BIOS creates Flush Hint Address descriptor tables (see NFIT Parsing

section) the driver is required to utilize those addresses when executing BW Block

Aperture interface read and write block sequences. In general:

 How to execute a WPQ Flush: By writing any value in to one of the Flush

Hint addresses for a given memory controller the driver can force any write

data in the memory controller to be written to the NVDIMMs durability
domain. The Flush Hint addresses are located in UC (uncached) memory so
the WPQ Flush write needs to be followed with an SFENCE but does not need
to flush cpu caches for the flush to take effect.

 Multiple Flush Hint addresses: If multiple Flush Hint addresses are

available for a given memory controller, the driver is free to choose any
address. For performance reasons, it is recommended that the driver
implement a least recently used or random address selection when picking the
next Flush Hint address.

 No Flush Hint addresses: If no Flush Hint address is available for a given
memory controller, the platform is utilizing another mechanism for
guaranteeing that data written to the memory controller is also written to the

NVDIMM’s durability domain, and there is no further steps for the driver to
execute.

There are other situations beyond the programming of the BW Block Aperture

interface where the driver will also take advantage of the WPQ Flush functionality.

These cases reduce the amount of data that needs to be written to the NVDIMMs

durability domain by the ADR HW logic on a power failure. These cases are also

important for minimizing the SW data recovery that is required if ADR is not able to

completely write all of the outstanding write data to the NVDIMM’s durability domain.

 Flushing file contents: When the filesystem is requested to flush the

contents of a persistent memory backed file (for example when an application
msync’s a file or requests a flush view of file) the NVDIMM driver should issue
a WPQ Flush to each memory controller in the interleave set where the file is
stored.

 Synchronizing storage device caches: The NVDIMM driver that interfaces
to block storage and surfaces Block over byte-addressable pmem devices may
receive requests from the block storage stack to synchronize caches (for

example ”SCSI Synchronize Cache” request). In response to these requests,

the driver should issue WPQ Flush requests to each memory controller in the
interleave set where the file is stored.

 Power down and driver unload sequences: For any planned power
sequence where power is going to be removed, or if the driver is unloaded
while the system is running, the driver should issue a WPQ Flush to each
memory controller in the system.

NVDIMM Block Window Driver Writer’s Guide

 23

Issuing DSM Commands to the NVDIMM

The DSM specification and ACPI Specification outline the NVDIMM-agnostic interface

that the driver should utilize for communicating NVDIMM commands with the NVDIMM

required for NVDIMMs adhering to format interface code 1. This interface is based on

the driver building a payload and sending it to the BIOS via a Device Specific Method

or DSM. By having the BIOS handle these requests the implementation details of a

specific NDIMMs interface are hidden from the driver, allowing the driver to implement

a management interface that can work for multiple NVDIMM implementations. The

NFIT specification outlines the DSM payload fields and specific data payloads for

GetSmartHealthInformation, GetNamespaceLabelDataAreaSize,

GetNamespaceLabelDataAreaData, SetNamespaceLabelData, address range scrub,

and a vendor specific pass-through command. The latter interface is utilized by the

driver for any commands not specifically specified in the NFIT specification.

The DSM interface is synchronous meaning that the call to the ACPI stack to send the

message will not complete until the underlying command to the NVDIMM has

completed. However, the address range scrubbing (ARS) DSM command will return

once the scrub has been initiated (via the start ARS command) and the driver will

need to re-submit the command (using the query ARS status) to poll for ARS

completion.

The DSM message consists of a UUID that defines the DSM interface, the revision ID,

the function index (essentially the opcode), followed by the DSM payload. In general

the DSM payload contains the NFIT device handle, followed by some number of bytes

of input data, status, and some number of bytes of output data. The NFIT device

handle is found in the device mapping to system physical address range mapping

table, as specified in the ACPI NFIT Specification. The UUID and revision ID are also

specified in the NFIT specification.

Preconditions:

 The NVDIMM driver has an OS-specific mechanism to send DSM messages to the
BIOS.

 The NVDIMM driver has determined the NFIT device handle (from the NFIT) for the
specific NVDIMM it wishes to send the NVDIMM command to.

 The NVDIMM driver has a NVDIMM command to send, formatted per the DSM
specification.

 The NVDIMM driver has the NVDIMM command payload, if any, to send, formatted
per the NFIT specification.

Steps:
1. The NVDIMM driver builds the DSM message per the NFIT specification

formatting.

2. The NVDIMM driver sends the DSM message to the BIOS code and when the

message is completed back to the driver, it checks the resulting Status in the

output payload to verify the completion status of the command. Note that for

the address range scrub command (start ARS) the driver will need to send

further commands (query ARS status) to poll for the final completion

 NVDIMM Block Window Driver Writer’s Guide

24

Block Windows

The block window aperture mechanism allows software access to data in persistent

memory without mapping the entire persistent memory range into the kernel’s virtual

address space. The accessible range of persistent memory therefore may exceed the

available SPA space and/or kernel virtual address space supported by the host OS. A

positive side-effect of the block window aperture architecture is that large ranges of

persistent memory are not exposed to stray writes from faulty or malicious kernel

code.

Each NVDIMM has some number of block windows (BWs) for use with the NVDIMM

block window interface. The exact number of BWs, their location, and their size is

found using the NFIT. See the following sections that outline the details of how the

block window interface is programmed by the driver.

A Block Window contains three things:

 Command Register - Points the BW to a specific DPA, sets the direction for the

transfer, and the size of the transfer

 8k Aperture - Provides a window to allow access to the data at the target DPA

 Status Register - Latches errors during transfers, cleared by setting the command

register

Some basic points about using Block Windows:

 Every NVDIMM requires the use of block window registers that are specific to that

NVDIMM.

 Since each NVDIMM has multiple block windows, many parallel operations can be

carried out on the same NVDIMM at the same time.

 Each block window is used for the transfer of one logical block of data. Multi-block

transfers are done by transferring individual blocks with BW command register

programming in between each block.

 Block Windows can be reused immediately upon completion of a data transfer.

There is no performance advantage to switching BWs between transfers.

 Moving data through a block window aperture utilizes load and store instructions

that operate on virtual addresses. Because of this, drivers do not need to use

physical DMA scatter gather lists and can simply use the virtual addresses of the

host data buffers.

 Each NVDIMM supports an equal number of BW command, status, and aperture

registers, so multiple overlapped IO can move data through the NVDIMM at the

same time.

Driver threads taking ownership of a BW must follow these basic rules or risk data

corruption:

 After the driver selects the BW command and aperture registers and calculates the

DPA for the block window transfer, interleaving is taken in to account by calculating

the virtual address for both registers. The driver uses the virtual address to

NVDIMM Block Window Driver Writer’s Guide

 25

program the BW command and to copy the data in/out of the aperture. The driver

moves the data based on the LineSize of the interleave that is in effect and must re-

calculate the register aperture virtual address for the data movement at each

LineSize interval. The driver uses the NFIT interleave table to calculate these virtual

register addresses, which takes in to account the interleaving in affect. See the

following sections that outline the details of how the virtual register address is

calculated.

 BW command register must be programmed with appropriate R/W bit and transfer

size individually for each block transfer. The transfer size is the size of a logical

block in 64-byte cache line increments. While the aperture size is 8k, only one block

of data can be moved through an aperture at a time, and the any unused space in

the aperture is not utilized.

 After writing the BW command register to reprogram the aperture, cached data

from previous BW use may still be sitting in cache. So before reading from the

aperture the data must be invalidated using CLFLUSHOPT (the lines cannot be dirty

due to these rules, so CLFLUSHOPT acts like an invalidate operation). Exception: If

the Block Data Window Invalidation Required bit is clear in the NVDIMM flags field

returned by the GetBlockNvdimmFlags DSM command, then the NVDIMM does not

require flushes before BW reads for that device.

 Writes done through the aperture must be done using non-temporal instructions or

must be followed by CLFLUSHOPTs so no dirty cache lines exist when the BW is

released.

For performance, not correctness, this rule should also be followed:

 A block write via a BW should not be pre-emptible (the entire block transfer

happens on the same CPU).

Warning: Attempting to utilize the same physical portions of an NVDIMM for block windows and
direct persistent memory access, at the same time, will lead to undefined behavior!

While these regions can all be used on each NVDIMM at the same time, on the same

NVDIMM, the regions cannot overlap one another. It is the responsibility of the driver
and management SW to enforce this rule.

Block Window Register Definition

Figure 3 - BW Command and Address Register Format shows the format for the BW

command and address register. The first 37 bits of a BW address are programmed

with the DIMM physical address (DPA) for the block window transfer, shifted right 6

bits to make the address a 64-Byte cache line relative address.

 NVDIMM Block Window Driver Writer’s Guide

26

SIZE BW ADDRESS

BLOCK WINDOW HW REGISTER FORMAT – BW COMMAND/ADDRESS REGISTER

RESERVED BW ADDRESSCMD

BIT 63 57 56 55 48 47 37 36 32 31 0

FIELD DESCRIPTION

BW ADDRESS [31:0] The BW Cache Line Relative DPA Address [37:6] for the request

BW ADDRESS [36:32] The BW Cache Line Relative DPA Address [42:38] for the request

SIZE The size of the BW transfer in number of cache lines.

COMMAND Bit [56] is 1 – Write Command

Bit [56] is 0 – Read Command

DPA ADDRESS

BIT 42 38 37 6 5 0

RESERVED

Figure 3 - BW Command and Address Register Format

The transfer size is the number of cache lines of data that the request will move based

on a 64-Byte cache line utilized by all of the Intel® Architecture platforms that

support the NVDIMM. The maximum transfer size supported by the NVDIMM is 128

cache lines for a maximum logical block size of 8192 bytes. Only the lowest bit 56 of

the command is currently used where a 1 is a write and a 0 is a read request. The

NVDIMM will use this setting to determine if any data moves through the aperture in

an unexpected direction. See the status register description below for direction error

reporting.

Figure 4 - BW Status Register Format describes the format of the block window status

register.

Figure 4 - BW Status Register Format

The INVALID ADDRESS bit indicates the DPA specified in the BW address register is

not a valid address for the NVDIMM being accessed. The NVM UE bit indicates that an

uncorrectable ECC error occurred while attempting to access the NVDIMM at the DPA

BW address programmed. The NVDIMM HW checks the direction of the data

movement within the BW aperture against the command bit specified in the BW

NVDIMM Block Window Driver Writer’s Guide

 27

command register and indicates a read miss-match utilizing the READ MISSMATCH

status bit. Finally a data movement utilizing a locked DPA range will result in the DPA

RANGE LOCKED bit being set. Likewise a data movement utilizing a disabled BW

region will result in setting the BW DISABLED bit. If all of the utilized bits described

here are 0, the BW transfer succeeded.

Note: The driver cannot assume the value of the RESERVED bits in the status register

are zero. These reserved bits need to be masked off, and the driver must avoid

checking the state of those bits.

The PENDING bit is utilized for those NVDIMM implementations that do not complete

the BW aperture data transfer before the time the status register is read. The NFIT

NVDIMM control region table, NVDIMM control region flag Bit 0 set to 1 indicates that

the NVDIMM is buffered and will set the pending bit in the BW Status register until the

data transfer has completed. This bit is for supporting NVDIMM implementations that

require the driver to poll for BW data transfer completion. It is up to the driver author

to determine if buffered NVDIMMs will be used with the driver and handle the pending

bit being set.

The BW Status Register is cleared by the NVDIMM when the BW Command and

Address Register is written by SW.

Figure 5 – BW Aperture Register Format shows the 8KB aperture format utilized for

block-sized data movement through the block window hardware. The driver must

calculate the SPA virtual address for each LineSize amount of data that is transferred

to account for the memory controller’s interleaving of data.

APERTURE APERTURE

BYTE 8191 0

FIELD DESCRIPTION

APERTURE The NVDIMM HW Window into 8k of the Persistent Memory

whose address is the lower 37 bits of the BW Command/Address

register

BLOCK WINDOW HW REGISTER FORMAT – BW APERTURE REGISTER

Figure 5 – BW Aperture Register Format

Calculating Register SPA and Virtual Addresses
In order for the driver to take memory controller interleave in to account when

reading and writing the BW registers, the register offset in the NVDIMM register layout

is run through a series of calculations to find the relevant NVDIMM HW register system

physical address (SPA). The SPA is then converted to a NVDIMM HW register virtual

address. These calculations are based on the NIFT table in general and specifically the

interleave table for each NVDIMM. So once the NVDIMM for the request has been

determined, that NVDIMM’s interleave table will be referenced by the driver to

calculate the driver’s virtual address used for each register access. This will account

 NVDIMM Block Window Driver Writer’s Guide

28

for the starting offset and will skip required holes in the address space for the

interleave.

Before detailing the driver calculations that are performed to get the SPA and the

NVDIMM HW register virtual address, it is important to know some of the background

in how the HW is set up and how the interleave works. This will make the NFIT

Interleave Tables and the NVDIMM HW Register Virtual Address calculation easier to

understand, detailed later in this section.

Memory Controllers, Channels, Multi-Way Channel Interleave
BW registers can exist in an interleave of multiple NVDIMMs and because of this, the

driver needs to account for the interleaving that’s in effect when accessing BW

registers. This will be discussed in detail in the Block Window section of this

document.

Figure 6 - Memory Controller TopologyFigure 6 - Memory Controller Topology shows a

basic high-level diagram of a platform containing NVDIMMs to help describe how CPU,

Internal Memory Controllers, Memory Channels, DRAM DIMMs, and NVDIMMs are

related. The InterleaveWays is the number of NVDIMMs connected to each internal

memory controller multiplied by the number of internal memory controllers being

utilized for the socket. The driver uses the InterleaveWays value to calculate the

NVDIMM HW register virtual address used for writing the block window command

registers and BW apertures, and for reading the BW status register.

NODE 0
SOCKET 0

CPU

EXAMPLE NVDIMM SYSTEM HW TOPOLOGY

INTEGRATED
MEMORY

CNTRLER 0
(iMC0)

DDR4 MEMORY
CHANNEL 0

DRAM
DIMM

NVDIMM 1

DDR4 MEMORY
CHANNEL 1

DRAM
DIMM

NVDIMM 2

DDR4 MEMORY
CHANNEL 2

DRAM
DIMM

NVDIMM 3

INTEGRATED
MEMORY

CNTRLER 1
(iMC1)

DDR4 MEMORY
CHANNEL 3

DRAM
DIMM

NVDIMM 4

DDR4 MEMORY
CHANNEL 4

DRAM
DIMM

 NVDIMM 5

DDR4 MEMORY
CHANNEL 5

DRAM
DIMM

NVDIMM 6

TERM DESCRIPTION EXAMPLE VALUE
#IMCs Number of Integrated Memory Controllers (iMCs) 2

that have DDR4 DIMMs or NVDIMMs attached
#WAYS PER IMC Number of NVDIMMs connected 3

per Integrated Memory Controller
InterleaveWays Total number of NVDIMMs in this Interleave Set: 6

#WAYS PER IMC * #IMCs

SOCKET 1

SOCKET N

NODE N

Figure 6 - Memory Controller Topology

Figure 7 - Memory Controller Interleave is a basic diagram explaining memory channel

interleave and the concepts of interleaving, LineSize, NumLines, and RotationSize. The

driver will utilize these variables when calculating the NVDIMM HW register virtual

NVDIMM Block Window Driver Writer’s Guide

 29

address used for writing the block window command and BW apertures, and for

reading the BW status register.

IMC 0 IMC 1 IMC 0

CHANEL 0

CHANEL 1

CHANEL 2

0

1

2

5

0

1

0

1

2
3

4

5

LineSize = The number of bytes of data transferred per Memory Channel before moving to the
next Memory Channel. Otherwise known as the Channel Interleave Size.

RotationSize = The total number of bytes that make up
the repeating pattern for the Memory Controller’s
interleaving, LineSize * NumLines.

MEMORY CONTROLLER CHANNEL INTERLEAVE

Interleaving - The
Memory Controller is

interleaving data
across NVDIMMs by

selecting different
Memory Channels in a

rotating pattern
depending on the

LineSize utilized by the
hardware and the

number of NVDIMMs
taking part in the the

interleave,
InterleaveWays

5

3

4

3

4

0

1

2

NumLines = The total number of lines that make up a repeating pattern for the Memory Controller’s
Interleaving. This is dependent on the number of iMCs present, the LineSize being utilized and the
total number of NVDIMMs that are involved in the interleave (InterleaveWays).

Figure 7 - Memory Controller Interleave

Interleaving with Persistent Memory
Regions of the NVDIMMs that are configured as persistent memory will utilize memory

controller interleave, which is factored in to the SPA range. The SPA range is described

in the NFIT, system physical address range descriptor with address range type 1.

Since the SPA range is accessed directly with load/store instructions and does not

make use of NVDIMM registers like the block window interface does, the driver does

not need to account for interleaving when calculating virtual addresses.

If an NVDIMM is added to the system and is configured as persistent memory, a new

interleave set will be created for the new persistent memory when the system is next

rebooted. So any persistent memory that has been added to the system shows up as

a new interleave set, leaving the existing sets undisturbed.

NVDIMM HW Register SPA and Virtual Address Calculation
The driver communicates with the NVDIMM via registers that the BIOS has mapped

into the SPA space. Since these registers exist in memory that is interleaved by the

memory controller, the driver must calculate the NVDIMM HW register virtual address

for every BW command and status register or BW aperture it is going to access by first

calculating the SPA of the register.

The NVDIMM HW register calculation requires the register address offset for the

register being accessed by the driver and the specific NVDIMM described by the

namespace for the IO being accessed. The register address offset for BW command

registers is found by referencing the NFIT NVDIMM control region table, command

register offset in block control region and size of command register in block control

window. The register address offset for BW status registers is found by referencing the

NFIT NVDIMM control region table, status register offset in block control region and

size of status register in block control window. Likewise, to find the register address

offset for BW aperture registers, reference the NFIT NVDIMM block data window

region table, block data window start offset and size of block data window.

 NVDIMM Block Window Driver Writer’s Guide

30

Virtual Address Calculation with Interleave
Figure 8 – Virtual Address Calculation with InterleaveFigure 8 – Virtual Address

Calculation describes the calculations the driver must execute to determine the kernel

system virtual address for any NVDIMM HW register when an interleave is present.

The figure also contains the data required for each calculation and the NFIT Table

references required to complete the calculation steps. The calculation will require

access to the NFIT system physical address range description table, memory device to

SPA range mapping table and the interleave table, probably cached in driver memory

for quick efficient access. The NVDIMM described by the namespace for this IO is

utilized for all references to the NFIT tables which are used to find the LineSize,

NumLines, InterleaveWays, and LineOffset. Note that the StartingPhysAddress is

calculated at driver initialization time when the NFIT is parsed for each of the NFIT

address ranges. The same steps are used to determine the SPA for the address type 2

control registers including block control and status registers, and address type 3 block

apertures simply by replacing the StartingPhysAddress with the address for that

region.

NVDIMM Block Window Driver Writer’s Guide

 31

Here are the basic execution steps for calculating the NVDIMM HW Register Address

for any NVDIMM:

1. Calculate the starting virtual address of the memory region – The driver

uses mapping address range type 2, control region, when finding the virtual
address for block control, and block status registers. Likewise the mapping
address range type 3 is used when finding the virtual address for the block
window apertures. The desired address range type is used to access the NFIT
system physical address range description table and find the physical address the
BIOS has mapped, the StartingPhysAddress.

2. InterleaveWays –The driver determines the number of NVDIMMs taking part in

the interleave of the memory controller by accessing the specific NFIT memory
device to system physical address range mapping table. The driver determines the
NVDIMM from the namespace for this IO and stores the reported InterleaveWays.

3. LineSize, NumLines – Using the NVDIMM described by the namespace for this

IO, the driver selects the NFIT interleave description table and stores the reported
LineSize and NumLines for use in calculating the LineNumber, RotationSize, and
Remainder. The LineSize is the number of bytes the internal memory controller
will transfer in one memory channel request. NumLines represents the minimum

number of lines in the interleave set before the interleave pattern repeats.
4. LineNumber = (Register Offset % RotationSize) / LineSize – The specific

line number the driver will use as an index in to the NFIT Interleave Table
LineOffset[] array.

5. RotationSize = LineSize * NumLines – The minimum number of bytes in the
interleave set before the interleave pattern repeats.

6. RotationNumber = Register Offset / RotationSize – Which rotation the

register access is in based on the minimum number of bytes in the interleave set.
7. Remainder = Register Offset % LineSize – Any bytes less than the LineSize of

256Bytes is considered the remainder that must be added in to the NVDIMM HW

register virtual address.
8. LineOffset – The driver accesses the NFIT interleave description table for the

specific NVDIMM described by the namespace for this IO and uses the LineNumber

calculated in step 4 to retrieve the LineOffset array value, LineOffset[LineNumber
]. This is the interleave offset to be applied for the given LineNumber.

9. Register SPA = RotationSize * RotationNumber * InterleaveWays +
LineOffset + Remainder + StartingPhysAddress – This is the physical
address for the desired register.

10. NVDIMM HW Register VA – The virtual address for the register SPA is found
using OS-specific means. This is virtual address the driver uses to access the
desired register.

 NVDIMM Block Window Driver Writer’s Guide

32

InterleaveWays

LineSize NumLines

RotationSize

RotationNumber

LineNumber

RotationSize

LineSize

LineOffset RotationSize

Register SPA = RotationSize * RotationNumber * InterlevaeWays + LineOffset + Remainder + StartingPhysAddress

HW Register Virtual

System Address

NFIT: Interleave Description Table for

NVDIMM the Namespace describes.

RotationSize = LineSize *

 NumLines

RotationNumber =

Offset / RotationSize

NFIT: Memory Device to

System Physical Address

Range Mapping Table for

NVDIMM the Namespace

describes.

COLOR KEY

Virtual Address Calculation

NFIT Reference

Remainder

Remainder =

Offset % LineSize

Register to Access

LineSize

NFIT: Interleave Description Table: Select

Table for NVDIMM the Namespace

describes, LineOffset[LineNumber]

NFIT: System Physical Address

Range Description Table:

Find Table with matching

Address Range Type for the

register being utilized

StartingPhysAddress

LineNumber = (Offset % RotationSize)

 / LineSize

CALCULATION INPUT

CALCULATION OUTPUT

HW REGISTER SPA & VIRTUAL ADDRESS CALCULATION

Interleave Present

Register SPA

HW Register VA = Get OS Specific System VA for Register SPA

NFIT: For BW Command and Status Registers: To find the Register Address Offset utilize the NVDIMM

Control Region Table – Command Register Offset In Block Control Region and Size of Command Register in

Block Control Window OR Status Register Offset in Block Control Region and Size of Status Register in Block

Control Window. For BW Aperture Registers: To find the Register Address Offset utilize the NVDIMM Block

Data Window Region Table – Block Data Window Start Offset and Size of Block Data Window.

Offset Offset Offset

Figure 8 – Virtual Address Calculation with Interleave

NVDIMM Block Window Driver Writer’s Guide

 33

Virtual Address Calculation without Interleave
Figure 9 - Virtual Address Calculation without Interleave describes the Virtual Address

calculation for each register when no interleave is present. This calculation simplifies

to:

1. Register SPA = Register Address Offset + StartingPhysAddress . –

The physical address for the desired register.

2. NVDIMM HW Register VA – The virtual address for the Register SPA is

found using OS-specific means. The driver uses this virtual address to
access the desired register.

Released to Microsoft under CITA-A #INTC123688_A Add-1

Register SPA = Offset + StartingPhysAddress

HW Register Virtual

System Address

COLOR KEY

Virtual Address Calculation

NFIT Reference

Register to Access

NFIT: System Physical Address

Range Description Table:

Find Table with matching

Address Range Type for the

register being utilized

StartingPhysAddress

CALCULATION INPUT

CALCULATION OUTPUT

HW REGISTER SPA & VIRTUAL ADDRESS CALCULATION

No Interleave

Register SPA

HW Register VA = Get OS Specific System VA for Register SPA

NFIT: For BW Command and Status Registers: To find the Register Address Offset utilize the NVDIMM

Control Region Table – Command Register Offset In Block Control Region and Size of Command Register in

Block Control Window OR Status Register Offset in Block Control Region and Size of Status Register in Block

Control Window. For BW Aperture Registers: To find the Register Address Offset utilize the NVDIMM Block

Data Window Region Table – Block Data Window Start Offset and Size of Block Data Window.

Offset

Figure 9 - Virtual Address Calculation without Interleave

 NVDIMM Block Window Driver Writer’s Guide

34

Block Window Aperture Programming
This section provides the details of the final BW Aperture memcopy loop, which moves

Line Size number of Bytes of data to/from the Aperture using the NVDIMM HW

register address calculation and the virtual address of the host I/O request buffer.

Figure 10 - Block Window Programming Sequence demonstrates the sequence the

driver executes to transfer data utilizing a block window.

BTT

DPA

Address Range Type 2

Block Control

Virtual Address Space:

Lookup Table

R/W

BW Command 100

BW Status 100

BW Status 99

BW Command 101

BW Status 101

3

Size BW Address

2
NVDIMM

Logical

Block

Host

Logical

Block

Host

Logical

Block

Host

Logical

Block

NAMESPACE

4

Logical

Block

Logical

Block

Address Range

Type 3 Block

Aperture: Virtual

Address Space:

BW Aperture:

Lookup Table

BW Aperture 99

BW Aperture 100

BW Aperture 101

Status Bits
10

IO Buffer

IO Buffer

Host IO

Request

Virtual

Buffer

IO Buffer

1

BW Aperture 100

LineSize

LineSize
6

7

memcopy

LineSize

LineSize

8

Translation Steps

HW Register Virtual Address

Host LBA to NVDIMM relative LBA w write atomicity

NVDIMM relative LBA to Namespace Offset

loop

NAMESPACE OFFSET

NAMESPACE

LABEL

Starting

DPA

NVDIMM

5

Namespace Offset to DIMM Physical Address (DPA)

memcopy

9

Figure 10 - Block Window Programming Sequence

NVDIMM Block Window Driver Writer’s Guide

 35

The following BW programming steps are shown in Figure 10 - Block Window

Programming Sequence:

STEP DESCRIPTION

INIT TIME Driver builds a virtual address table of BW command, status, and aperture
registers

1 Driver selects a BW command, status, and initial aperture for the IO
request, from virtual memory utilizing pre-initialized driver tables

2 Driver translates the host LBA to a NVDIMM relative LBA with write
atomicity (if present) accounted for

3 Driver translates NVDIMM relative LBA in to a namespace offset
4 Driver calculates the DIMM physical address (DPA) from the namespace

offset

5 Driver writes the DPA in to the virtual BW command register
6 Driver executes load/store instructions to memcopy the first LineSize

amount of data utilizing the starting virtual BW aperture address and the
IO buffer virtual address

7 Driver increments the BW aperture address by the LineSize and calculates
the next virtual address for the next portion of the BW aperture

8 Driver executes load/store instructions to memcopy the next LineSize
amount of data utilizing the BW apertures virtual address and the next
portion of the IO buffer virtual address

9 Steps 7 and 8 are repeated until all data for the logical block has been
transferred

10 The driver reads the final BW status using the block window status
register’s virtual address

 NVDIMM Block Window Driver Writer’s Guide

36

Basic Driver Storage Mode Block Execution Flows

This section describes the basic high-level flows the NVDIMM driver uses to perform

block mode reads and writes. For more in-depth execution flows, see the sample Linux

Block Driver.

Additional notes that apply to the flows are outlined below:

 “if (FlushRequired)” – true if the NVDIMM requires CPU cache flushes after BWs

have been moved. This is indicated in the Block Data Window Invalidation Required

flag returned as a response to the GetBlockNvdimmFlags DSM command.

 The BW Status register is assumed to not set bit 31, the pending status bit, and

these flows do NOT account for the pending status the NVDIMM returns.

 Any of the steps that require a virtual address to be calculated for a register access

can be implemented with a pre-initialized table. This allows the address translation

to be calculated at driver initialization time, removing those calculations from the

run time IO path.

 Note that the namespace labels specified in the NVDIMM Namespace Specification

support a physical block size on the media that is larger than the logical block size

reported to the host operating system. The physical block size utilized with the BW

aperture must be a multiple of 64 bytes since data is moved with cache line

granularity. The logical block size does not have such restrictions. The following

flows do not show the required logic for handling logical block sizes < physical block

size, but it is easy to use a scratch buffer to load or store the remaining number of

bytes (physical block size – logical block size) after the required load/store transfer

of the logical block size number of bytes to/from the host data buffer has occurred.

Since the bytes transferred in/out of the scratch buffer are not part of the host IO

transfer, the additional transfer is only used to satisfy the BW HW and the data is

thrown away. This solution wastes space in between each logical block but makes

the implementation easy.

The use of ADR is now required for support of NVDIMMs. The addition of ADR means
that applications no longer need to explicitly commit data to the NVDIMM when
utilizing App-Direct mode. For Storage Mode, drivers are still responsible for
committing updates to the BW Command register to the NVDIMM and committing
write data moved through the BW Aperture Register to the NVDIMM by utilizing the
WPQ Flush feature.

NVDIMM Block Window Driver Writer’s Guide

 37

Block Read
The following execution steps should be followed when reading a single logical block.

This sequence of steps is repeated for each logical block being transferred:

1) Map the destination buffer for write access from kernel virtual.
2) Determine the external LBA for the I/O request.
3) Pass the external LBA to the BTT IO layer to calculate the proper post-map

LBA for the request based on whether write atomicity is being utilized and the
size and number of free blocks in the BTT. See the NVDIMM Namespace
Specification for details on this step.

4) Translate the post-map LBA in to namespace offset.
5) Translate the namespace offset in to the DPA.
6) Using the NVDIMM described by the namespace for this IO, select an available

BW command register, status register and BW aperture.

7) Calculate the command register virtual address using the driver-derived
interleave information, and program the BW command register with the DPA,
read mode, and LBA size.

8) Make command register update durable: Using the memory controller

described by the ACPI NFIT tables for the NVDIMM for this IO, get a Flush Hint

Address for this controller and perform a WPQ Flush by executing a store with

any data value to the Flush Hint Address (which are in UC domain), followed

by an SFENCE.

9) Flush cache if FlushRequired. This will flush cache of possible stale data from
prior use of BW Aperture. Use CLFLUSHOPT of each cache line in the block
starting with the BW address for size of block, followed by SFENCE

10) Calculate the BW aperture register virtual address using the driver-derived

interleave information, and move the interleave LineSize number of bytes of
data from the BW aperture to the destination buffer virtual address. Increment
the BW aperture and destination buffer by the LineSize and repeat this step

until the entire logical block has been copied.
11) Calculate the BW status register virtual address using the driver-derived

interleave information, and check the corresponding BW status register for
any errors.

12) Release the BW resources and unmap the destination buffer.

 NVDIMM Block Window Driver Writer’s Guide

38

Block Write
The following execution steps should be followed when writing a single logical block.

This sequence of steps is repeated for each logical block being transferred:

1) Map the source buffer for read access from kernel virtual address space.
2) Determine the external LBA for the IO request.
3) Pass the external LBA to the BTT IO layer to calculate the proper post-map

LBA for the request based on whether write atomicity is being used and the
size and number of free blocks in the BTT. See the NVDIMM Namespace
Specification for details on this step.

4) Translate the Post-Map LBA in to namespace offset.
5) Translate the namespace offset in to the DPA.
6) Using the NVDIMM described by the namespace for this IO select the

appropriate BW command register, status register and BW aperture.
7) Calculate the Command register virtual address using the driver derived

interleave information, and program the BW command register with the DPA,
write mode, LBA size.

8) Make command register update durable: Using the memory controller

described by the ACPI NFIT tables for the NVDIMM for this IO, get a Flush Hint

Address for this controller and perform a WPQ Flush by executing a store with

any data value to the Flush Hint Address (which are in UC domain), followed

by an SFENCE.

9) Calculate the BW aperture register virtual address using the driver-derived

interleave information, and non-temporal move the interleave LineSize
number of bytes of data from the source buffer virtual address to the BW
aperture (uses non-temporal store instructions). Increment the BW aperture
and source buffer by the LineSize and repeat this step until the entire logical
block has been copied. Issue SFENCE.

10) Make writes through the aperture durable: Using the memory controller

described by the ACPI NFIT tables for the NVDIMM for this IO, get a Flush Hint

Address for this controller and perform a WPQ Flush by executing a store with

any data value to the Flush Hint Address (which are in UC domain), followed

by an SFENCE.

11) Calculate the BW status register virtual address using the driver-derived
interleave information, and check the corresponding BW status register for
any error.

12) Using the allocated post-map LBA from step #3 above, utilize the BTT IO layer
to update the on-media BTT metadata based on the write atomicity and free
block settings configured. See the NVDIMM Namespace Specification for
details on this step.

13) Release the BW resources and unmap the source buffer.

Block Flush
Since all block window writes are made persistent before the writes are completed

back to the host, there is never any write data that needs to be made persistent at a

later point in time. Thus block flush or synchronize cache requests from the host can

be treated as NO-OPs.

