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Introduction 

Document Scope 

This document is targeted to driver writers for NVDIMMs that adhere to the NFIT 

tables in the Advanced Configuration and Power Interface (ACPI) V6.1 specification, 

the Device Specific Method (DSM) V1.3 specification and the NVDIMM Namespace 

Specification V1.0. This document specifically discusses the block window HW interface 

and persistent memory interface that Intel is proposing for NVDIMMs. These interfaces 

are utilized in the released Linux NVDIMM driver stack. 

Related Documents 

This document depends heavily on the documents listed in Table 1. Where possible, 

this document will call out specific references to these documents. 

Table 1 - Related Documents 

Title Description 

Advanced Configuration and 

Power Interface Specification 

(ACPI) V6.1  

This document describes the ACPI specified NVDIMM Firmware 

Interface Tables (NFIT) that the BIOS builds to describe NVDIMMs, 

including NVDIMM interleave information, and how the DIMMs are 

mapped in to system physical address space. Available through the 

UEFI.org website. 

Device Specific Method (DSM) 

interface proposal V1.3 

This document describes the proposed interface between the NVDIMM 

Driver and the ACPI SW stack for configuring, managing, and 

enumerating NVDIMMs.  Available through the pmem.io website. 

NVDIMM Namespace Specification 

V1.0 

This document describes the proposed label mechanism used to sub-

divide the NVDIMM into BlockNamespaces and PmemNamespaces, as 

described by Namespace Labels, including the Block Translation Table 

(BTT) used to provide power-fail write atomicity. Included in this 

specification are on-media structure definitions for labels and the 

BTT, and rules for using those data structures. Available through the 

pmem.io website. 

NVDIMM Linux driver code 

released by Intel 

Intel has released NVDIMM Linux sample code that utilizes the 

interfaces specified in this specification. 
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Terminology 

Table 2 - Terminology provides a glossary of terms used in this document.  

Table 2 - Terminology 

Term Description 

ADR 
Asynchronous DRAM Refresh – Chipset & CPU HW and motherboard routing that allows a 

power supply to provide signaling to the chipset that system power has been lost.  The 

residual power supply capacitance is utilized by the HW to write outstanding data in the 

ADR Domain to the NVDIMM’s Durability Domain.    

 

The use of ADR is now required for support of NVDIMMs.  The addition of ADR means 

that applications no longer need to explicitly commit data to the NVDIMM when utilizing 

App-Direct mode.  For Storage Mode, drivers are still responsible for committing updates 

to the BW Command register to the NVDIMM and committing write data moved through 

the BW Aperture to the NVDIMM by utilizing the WPQ Flush feature. 

ADR Domain 
Write data that has made it to the Memory Controller is considered to be in the ADR 

Domain and will be written to the NVDIMM durability domain by the ADR HW when 

system power is lost. 

BW Block Window. A set of registers consisting of a command register, a status register, and 

an aperture allowing the NVDIMM driver to read and write blocks of data to any 

persistent area on an NVDIMM. 

BTT Block Translation Table. A software data structure, defined in the NVDIMM Namespace 

Specification, which prevents torn blocks when a write is interrupted by a system crash, 

hang, or power failure. 

CLFLUSHOPT A performance-optimized version of the Intel® Architecture CLFLUSH instruction which 

flushes a single cache line from the CPU caches to the memory controller, evicting the 

content from the caches. This instruction is weakly-ordered, allowing multiple flush 

instructions to occur in parallel. 

CLWB New Intel® Architecture instruction to write back the current content of a cache line 

from a cpu cache to the memory controller while leaving the content of the cpu cache 

unchanged. 

DPA DIMM Physical Address. An address within the memory in an NVDIMM. 

External LBA The host OS logical block address passed to the driver in an IO request. This term is 

used to distinguish between the LBA given to the driver, and where the actual IO 

happens due to BTT translation. 

Flush Hint 

Address or 

Descriptor 

ACPI NFIT specified table containing uncached memory Flush Hint Addresses that the 

driver writes to initiate a WPQ Flush sequence to a specific memory controller to force 

write data in the memory controller to be written to the NVDIMMs durability domain.  If 

no Flush Hint Addresses are found by the driver it can be assumed that the driver does 

not need to execute any special functionality to flush write data from the memory 

controller to the NVDIMMs durability domain.  See WPQ Flush below. 

LBA Logical Block Address. IO requests to block devices are typically in terms of LBAs. For a 

byte-addressable NVDIMM like the NVDIMMs, the LBA is converted into a byte offset. 

NFIT The NVDIMM Firmware Interface Table, which defines the ACPI-like information created 

by the BIOS to inform the OS about NVDIMMs in the system. 
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Term Description 

NVM Non-Volatile Memory 

NVDIMM Non-Volatile DIMM. Non-volatile memory in a DIMM form factor. 

NVDIMM 

Durability Domain 

The HW Domain where write data is considered durable and can tolerate a power failure.  

This boundary is considered to be the NVDIMM controller HW. 

NVDIMM 

Namespace Label 

Labels, stored at a known location on NVDIMMs, which define the DIMM’s contribution to 

NVDIMM Namespaces. This is a software mechanism; the DIMM itself just sees the labels 

as part of the overall data stored on the DIMM. 

NVDIMM 

Namespace 

Similar to an NVMe Namespace or a Logical Unit (LUN) on a SCSI disk, this is a software 

mechanism for managing ranges of persistence on NVDIMMs.  

  

Persistent 

Memory 

Byte-addressable memory that retains its contents across power loss. 

SPA System Physical Address. A physical address on the host operating system. 

WPQ Flush  

or Write Pending 

Queue Flush 

Mechanism utilized by the driver to flush any internal memory controller HW 

queues/buffers of write data destined to the NVDIMM.   The flush is initiated by the 

driver by writing to specific uncached locations specified in the Flush Hint descriptors of 

the ACPI NFIT Table.  If no Flush Hint Addresses exist the driver does not issue the WPQ 

Flush.  See Flush Hint Address above. 
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NVDIMM Architecture 

The NVDIMM technology is the memory subsystem architecture for server platforms 

incorporating next generation non-volatile memory (NVM) technology in the form of 

an NVDIMM. The following sections introduce the basic proposed SW architecture 

utilized by the sample Linux SW stack.  

Proposed NVDIMM Software Architecture 

The major components for the proposed NVDIMM software architecture are shown in 

Figure 1 – Basic NVDIMM Software Architecture. 

  

Figure 1 – Basic NVDIMM Software Architecture 

 

The figure shows the NVDIMM at the bottom (systems can have multiple NVDIMMs). 

Those DIMMs are described by the BIOS to the OS via the ACPI-defined NVDIMM 

Firmware Interface Table (NFIT). The NVDIMM driver interfaces the OS application and 

file system components to the NVDIMM. The NVDIMM driver utilizes the proposed 

block window HW interface in the NVDIMM to move data to/from the persistent 

memory and the data buffers utilized by the OS. This interface is described in detail in 

Chapter 0 of this guide.   

For applications to directly access persistent memory utilizing a standard byte 

addressable load/store interface, the NVDIMM driver exposes the persistent memory 

through a persistent memory-aware file system, or some other OS-specific 

mechanism. Once persistent memory-aware applications have access to the persistent 

memory region addresses, they can use the memory directly and perform loads and 

stores without the need for an NVDIMM driver, minimizing or eliminating the file 

system and storage overhead of the OS. 
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NVDIMM Driver 

The combination of all of the components that implement the block window and 

persistent memory interfaces to the NVDIMM hardware are collectively called the 

NVDIMM driver. The NVDIMM block window interface described in Chapter 3 and the 

NVDIMM driver are designed to meet the following basic high-level requirements: 

 Manage all NVDIMMs with a single driver instance – An NVDIMM-aware platform 

BIOS creates a single NFIT that the NVDIMM driver is loaded against. This single 

driver instance is expected to manage all of the NVDIMMs in the system.  

 Support traditional OS storage stacks through the block window interface: 

 Direct attached SSDs - The NVDIMM Namespace Specification describes the 

NVDIMM namespace labels that are created from free space on the NVDIMM 

and are stored in a reserved namespace label data region on each NVDIMM. For 

block window regions of persistent memory, each NVDIMM namespace label 

describes one NVDIMM BlockNamespace or a portion of a BlockNamespace if the 

namespace is broken in to multiple, non-contiguous portions. Each 

BlockNamespace can be surfaced by the driver or other kernel components to 

the OS as an SSD direct-attached disk, interfacing with the rest of the 

traditional OS-specific block storage stack. 

 Support for Existing SW RAID implementations – See the section below on how 

the block window HW implementation allows the use of traditional SW RAID 

stacks with NVDIMMs. 

 Provides traditional block storage driver error model – See the section below on 

how the NVDIMM block window HW architecture allows non-traditional DIMM 

errors to be routed to the storage stack and why that is important to system 

robustness. 

 Optional single-sector power-fail write atomicity – The NVDIMM Namespace 

Specification outlines the Block Translation Table (BTT) metadata that is stored 

on the NVDIMM. The BTT provides single-sector write atomicity by 

implementing a write LBA indirection system. See the section below that 

explains the importance of this feature to traditional OS storage stacks. 

 Multiple logical block-size support including 512, 520, 528, 4096, 4160, and 4224 

byte block sizes that support embedded metadata in each block, like DIF/DIX.  

 NVDIMM management support 

Most of the above requirements are self-explanatory, but a few key requirements 

deserve more detailed explanation: 

Block Window Interface - Error Flow Requirement 
The way errors propagate is quite different between storage and memory. Storage 

errors are typically propagated up the storage stack where components like SW RAID 

or applications themselves can react to them. Memory errors are often handled 

transparently to applications and in many cases can cause the system to crash if it is 

deemed unsafe to continue. One feature of the proposed NVDIMM block window HW 

interface is that errors are returned to the NVDIMM driver instead of being exposed as 
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memory errors. Using a block window status register, the NVDIMM driver checks for 

errors after each block IO and propagates any errors as a block error through normal 

storage stack means. Without this HW support, storage mode errors would appear as 

memory errors instead of block storage errors, causing many systems to crash due to 

memory errors in kernel space, reducing overall system robustness. 

Block Window Interface - SW RAID Requirement 
In addition to the need to propagate errors to SW RAID as described above, it is also 

important for SW RAID to correctly understand the RAS boundaries of the underlying 

storage. The NVDIMM block window HW interface allows blocks to be placed directly 

on NVDIMMs, regardless of any memory controller-based interleaving currently in 

effect. The combination of this HW feature, memory error reporting on block transfers, 

and support in the driver allows SW RAID stacks to work correctly on NVDIMMs. The 

block window HW interface combined with NVDIMM BlockNamespaces provides the 

same level of SW RAID functionality as with separate discrete SSDs. 

Some SW RAID examples include:  

Redundancy - By isolating NVDIMM BlockNamespaces to specific NVDIMMs, RAID 

features such as RAID-5 can be used across NVDIMMs to provide data protection.  

Capacity Aggregation - Since the maximum NVDIMM BlockNamespace capacity is 

limited to the size of the NVDIMM, this capacity limitation with smaller NVDIMMs can 

be overcome using SW RAID to stripe together multiple NVDIMM Namespaces to 

create a larger virtual volume.   

Block Window Interface – Power-Fail Write Atomicity Requirement 
A typical SSD will maintain some sort of error correcting code (ECC) on each block in 

order to detect data corruption. If the system loses power during a write to an SSD, 

these results are possible (listed from most commonly implemented to least 

commonly implemented): 

 The sector completely contains the old data, or completely contains the new data. 

This happens when the SSD provides power-fail write atomicity. Many SSDs do 

this, at least for writes of 1 sector (it is a requirement of the NVM Express 

Specification, in fact). 

 The sector is torn by a power failure, so the data is corrupt. But the ECC indicates 

the data is corrupt, so an error results when reading that sector. 

 The sector is torn, but the ECC is somehow correct. So when SW reads the sector, a 

corrupt sector containing some old data and some new data is read. Since no error 

is indicated, this is silent data corruption. This has been reported on some HDDs 

and on early SSDs, but is quite rare, perhaps impossible, on modern SSDs. Most file 

systems and applications do nothing to detect this case (notable exceptions are 

check summing file systems like ZFS, btrfs, and ReFS). 

The case of the torn write is particularly interesting for NVDIMMs. While each write to 

the DIMM is done using a store instruction, and store instructions to NVDIMMs are 

power-fail atomic, a block of data that incorporates a number of atomic store 

instructions will not result in an ECC error on a block, if power is lost in the middle of 

updating that block. The block will contain some new data, whatever had been stored, 

and the rest of the old data, but nothing to indicate a corrupt block. Because this 

causes a silent data corruption on many file systems and applications, it is a 
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requirement that the driver provide at least single block power-fail write atomicity. 

This requirement is implemented through the use of BlockNamespaces that contain a 

BTT in the NVDIMM metadata layout and is discussed in some detail below.   

NVDIMM Labels, Namespaces, and BTTs 

The following sections provide a high level description of the key elements of the 

NVDIMM on media metadata layout and architecture. These components include 

Namespace Labels, BlockNamespaces, PmemNamespaces, and BTTs (Block 

Translation Tables). The NVDIMM Namespace and BTT formats are OS-independent 

and are described in full detail in the NVDIMM Namespace Specification. 

Namespace Labels 
Each NVDIMM namespace is described by a set of namespace labels that reside on 

each NVDIMM contributing to the namespace in a reserved area called the namespace 

label data area. The driver is responsible for maintaining the namespace labels that 

describes the namespaces. Since each NVDIMM can contain multiple labels, each 

NVDIMM can therefore contain multiple namespaces. The labels describe the DIMM 

physical address (DPA) and range of that portion of the namespace on that given 

NVDIMM. Namespace labels are not interleaved across multiple NVDIMMs. 

BlockNamespace labels on a given NVDIMM describe one or more BlockNamespaces. 

Since BlockNamespaces do not need to be contiguous, multiple BlockNamespace 

labels can be linked together on a given NVDIMM to describe a large logically 

contiguous region that is not physically contiguous on the NVDIMM. Drivers must 

account for any interleaving in affect when programing the block window HW 

interface, as described more in following sections. 

PmemNamespace labels on a given NVDIMM describe that NVDIMM’s portion of the 

interleave set utilized for the PmemNamespace. The driver typically does not need to 

understand the interleaving that is in affect for these namespaces. 

BlockNamespaces 
The NVDIMM Namespace Specification defines a BlockNamespace as a logical unit of 

storage conceptually similar to a standard disk drive, SSD, or SCSI LUN. A 

BlockNamespace is composed of ranges of persistent memory from one NVDIMM 

device. BlockNamespaces have a single logical block address (LBA) space that is 

numbered from 0 through (N – 1), where N is the number of logical blocks in the 

namespace. BlockNamespaces are created on regions of the NVDIMM that are enabled 

for persistent memory and start at high DPAs and grow down to minimize collisions 

with PmemNamespaces that start at low DPAs and grow up. BlockNamespaces can be 

created in portions of the persistent memory region that have an interleave set 

defined as long as no PmemNamespace is currently defined on the NVDIMM in that 

portion of the interleave set. 

The driver is ultimately responsible for surfacing each valid BlockNamespace to the 

operating system as a separate device. When interfacing to the OS’s storage stack, 

the BlockNamespace is usually in the form of a SCSI disk or LUN.   
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PmemNamespaces 
The NVDIMM Namespace Specification defines a PmemNamespace as a container for a 

portion of the system physical address space that has been mapped by the BIOS 

across one or more NVDIMMs grouped together in an interleave set. These 

PmemNamespaces tell the driver how much of the interleave set is used, leaving the 

remaining space for use with BlockNamespaces. The driver is ultimately responsible 

for surfacing each valid PmemNamespace to the OS as a separate device. Other OS 

SW components typically utilize these devices to create a persistent memory-aware 

file system. PmemNamespaces start at the low DPA of each NVDIMM and grow up to 

higher DPAs, minimizing collisions with BlockNamespaces that start at high DPA and 

grow down. 

BTTs 
Block Translation Tables (BTTs) are a software mechanism for providing power-fail 

write atomicity for NVDIMMs that do not have HW power-fail write atomicity available. 

As described in the previous section, providing power-fail write atomicity for a single 

block write is a block window requirement. This requirement is met using a BTT that 

maintains a small pool of free blocks used for writes. The BTT metadata and 

algorithms for using it are described fully in the NVMDIMM Namespace Specification. 

Persistent Memory-Aware File Systems and Applications 

A persistent memory aware-file system, kernel modules, or applications that wish to 

make use of byte-addressable persistent memory need to interface with the NVDIMM 

driver to obtain a list of PmemNamespace ranges that the driver has found through 

enumerating the NVDIMMs namespace labels directly. The SNIA NVM programming 

model specification calls out this action as getranges but the actual API name or 

method utilized is implementation-specific. Once the persistent memory-aware file 

system or kernel components get the physical ranges associated with a 

PmemNamespace, they need not ever call back to the NVDIMM driver to perform IO.  

Persistent memory-aware applications can execute direct load and store instructions 

to the virtual addresses of the persistent memory regions of each PmemNamespace 

and are responsible for flushing cpu caches to the ADR Domain of the system (utilizing 

CLFLUSHOPT or CLWB instructions) after writing new data. 

On behalf of the application, the ADR HW logic will guarantee (with some well-known 

limitations) that all write data that the application has flushed to the ADR Domain is 

written to the NVDIMM Durability Domain in the event of a power loss. 

NVDIMM Management Operations 

An important function of the NVDIMM driver is to provide the appropriate interfaces to 

NVDIMM manageability SW. This interface provides methods to find, create, modify 

and delete BlockNamespaces and PmemNamespaces through management of the 

namespace labels (as described in the NVDIMM Namespace Specification), gather 

SMART and health information, and a number of other functions. Refer to the specific 

NVDIMM management specifications for details on the specific interfaces that the 

NVDIMM driver should implement. 
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The management interface is composed of a number of IOCTLs that fall in to several 

categories: 

Pass-through IOCTLs 
These are management requests whose inbound and outbound payloads, commands, 

and status are created and handled by the management applications and the 

NVDIMM. The NVDIMM driver should validate the buffer for sufficient input and output 

length for these requests and route the IOCTL to the vendor-specific command DSM 

mechanism described in this guide and the DSM specification. The NVDIMM supports a 

command effect log that reports to the driver all NVDIMM Opcode combinations 

thatare supported by the NVDIMM, and a set of effect bits that describe the effects on 

the NVDIMM subsystem when the command is sent to the NVDIMM. The NVDIMM 

driver should retrieve the CommandEffectLog utilizing the GetCommandEffectLogSize 

DSM method and the GetCommandEffectLog DSM method. The driver can then check 

the vendor-specific command pass-through IOCTL payload opcode and handle the 

reported effects or potentially reject the pass-through command if the NVDIMM driver 

can’t guarantee system stability.   

IOCTLs & /sys Interfaces to Retrieve Driver-Managed Information 
In general, these IOCTL requests are from the management stack and are considered 

“native” driver IOCTLs. They retrieve information including current namespace and 

namespace label configurations, interleave set information, and driver capabilities. At 

boot time the NVDIMM driver will utilize GetNamespaceLabelSize & 

GetNamespaceLabelData _DSM commands to read Platform Configuration Data, 

current Namespace Labels, BlockNamespaces and PmemNamespaces and cache the 

data internally in the driver.  In response to these IOCTLs, the driver should validate 

the payload buffer for sufficient input and output length as well as completely 

validating the inbound payload for illegal payload values. The driver uses internally 

gathered data and context to fill in the output payload buffer and does not typically 

use a DSM command in direct response to these IOCTLs.  

IOCTLs to Create, Delete, or Modify Driver Managed Information 
In general these IOCTL requests are from the management stack and are considered 

“native” driver IOCTLs. They create or modify information like current 

BlockNamespaces or PmemNamespaces, and namespace label configurations, etc. The 

driver should validate the payload buffer for sufficient input and output length as well 

as completely validating the inbound payload for illegal payload values. The driver 

updates or modifies internally managed driver data and context utilizing the input 

IOCTL payload buffer and does not typically use a DSM command in response to these 

IOCTLs. One example where a DSM command is used in response to these IOCTLs is 

the SetNamespaceLabelData DSM command, which is utilized by the driver when an 

IOCTL to create, delete, or modify one or more BlockNamespaces or 

PmemNamespaces is requested. 
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Interfacing with NFIT-Based NVDIMMs 

This section covers the NFIT and DSM interfaces necessary to produce an NVDIMM 

block window device driver. The existence of the NFIT described in the ACPI 

Specification exposes NVDIMMs, interleave sets, and SPA ranges that have been 

mapped by the BIOS.  The existence of the ACPI0012 Root Device is surfaced to the 

OS via the ACPI stack and OSPM, and typically causes the OS driver to be loaded and 

initialized. The initialization begins with the driver pulling the relevant information 

from the NFIT, as described in the sections below.  

NFIT Parsing 

Refer to the NFIT in the ACPI specification and the following figure and discussion for 

details on the structure of the NFIT, the descriptor tables it encompasses, and the 

description of the specific fields. The NFIT is the primary means by which the 

NVDIMM-aware BIOS describes the physical HW topology of the system, including the 

number of nodes, the number of slots per node, the memory controllers per slot, and 

the topology of the NVDIMMs. The topology of the NVDIMMs includes the interleave; 

DIMM physical address (DPA); how they map to the system physical address (SPA) 

space; block window command, status, and aperture register definitions; and the 

unique NFIT device handle utilized with NVDIMM DSM commands.  
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Figure 2 - NFIT Layout 

Figure 2 - NFIT Layout shows the basic components of the NFIT in reserved ACPI 

memory and the relationship of those components to each other. Note that the ACPI 

namespace device that is created by the BIOS describes the location of the NFIT in 

memory and is the device that the OS will load the NVDIMM driver against. This is in 

place of a more traditional HW PCI function that a storage device would typically use. 

The NFIT is composed of a number of descriptors that are all placed in ACPI reserved 

memory space. The main NFIT table contains a list of NFIT table structures that are 

supported. The driver will utilize this list to search through memory and find all of the 
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descriptors that match each supported list. Each descriptor begins with 2 bytes of 

table structure information that is used to find and enumerate all of the support 

descriptors. See the NFIT figure above for the layout. 

The following descriptors are linked together in the NFIT: 

 Index Linked – System physical address range descriptor and memory device to 

system physical address range descriptor tables are linked by the SPA range 

description table index. The memory device to system physical address range 

descriptor is linked to the interleave descriptors for each NVDIMM via the interleave 

description table index. The NVDIMM control region descriptor, NVDIMM block data 

window region descriptor, and memory device to system physical address range 

descriptor are linked together via the NVDIMM control region descriptor table index.  

 NFIT Device Handle Linked – The memory device to system physical address 

range descriptor is linked to the flush hint descriptor table via the NFIT device 

handle. The driver utilizes the NFIT device handle from the memory device to 

system physical address range descriptor to find the flush hint descriptor containing 

the same NFIT Device Handle. 

In a system with multiple revisions of an NVDIMM implementation, the NFIT will 

contain unique instances of all of the above descriptors utilizing different range 

description table index, SPA range description table index, NVDIMM control region 

descriptor table index, interleave descriptor table index, node controller ID, socket ID, 

and memory controller ID. This allows different sizes and numbers of BW resources to 

be used in the same system and allows new NVDIMMs to be added without altering 

already established configurations. 

The driver will create a number of derived resources based on the NFIT. See the 

following sections for more details on how the driver will make use of this information. 

Driver-derived NFIT information includes: 

 Number of NVDIMMs present in the system - This is utilized throughout the 

driver for initialization and enumeration of the NVDIMMs. 

 Block Windows (BWs) – The NFIT NVDIMM block data window region descriptor 

describes the starting offset, size, and number of BW data apertures on the 

NVDIMM. The NFIT NVDIMM control region descriptor describes the starting offset, 

size, and number of BW command and status registers present. See the NFIT figure 

and further discussion below for more details. 
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 Interleave Information – When utilizing the block window HW interface to move 

data in/out of the DIMM, the interleaving of that portion of the DIMMs must be 

understood and taken in to account. The NFIT interleave table will give the NVDIMM 

driver the information needed to determine the internal memory controller 

interleave in effect. Anytime the driver moves data with a BW aperture window, the 

starting offset of the aperture must be adjusted to account for interleaving. Likewise 

data movement larger than the smallest non-interleaved transfer size must take in 

to account “holes” that must be left in the aperture window to insure the data is 

only written to the NVDIMM being addressed. For details on handling memory 

controller interleave, see the section on Programming Block Windows, Calculating 

the System Physical Address (SPA). 

Creating Internal Interleave Tables 
One of the most important pieces of information that the driver will need to use for 

the I/O path is the information found in the NFIT interleave tables. In general the 

interleave information will be utilized for translating the DPA address offset of the BW 

command, status, and aperture registers into a virtual address that the driver will 

utilize to directly access the register while taking interleaving in to account. There is a 

basic hierarchical sequence the driver uses to find and retain that information from the 

various NFIT tables. Here is the basic NFIT enumeration sequence: 

Find all of the NVDIMMs – Reference the NFIT system physical address range 

description tables for address range type 2, control regions, and find the SPA range 

description table index. Then reference all of the memory device to system physical 

address range mapping tables that have the same SPA range description table index. 

The interleave ways for any of the matching memory device to system physical 

address range mapping tables will be the number of NVDIMMs in the system. Since 

each NVDIMM will utilize separate control register regions, this count can be used as 

the number of NVDIMMs in the system.  

Organize by Range Type - The driver enumerates each of the SPA range description 

tables and organizes the data by the address range type that each range describes. 

Type 1 ranges describe persistent memory and will need to be utilized for persistent 

memory accesses. Address range type 2 tables describe the ranges used for the BW 

command and status registers. Type 3 ranges describe the block window aperture 

registers. For each address range type the driver uses the start address and length to 

map the given physical region that the BIOS has set up in to the system virtual 

address space of the operating system. Additionally, the driver needs to keep track of 

the SPA range description table index for each range as this is used to find the 

interleave table pertaining to this NVDIMM. 

Find Memory Device to SPA Range and Memcontroller ID – Using the SPA range 

description table index enumerate the memory device to system physical address 

range mapping tables that contain a SPA range description index that matches the 

indexes found in the previous step. This table describes the NVDIMM in detail including 

the memory controller ID. The driver must also save the InterleaveWays field 

contained in each of the memory device to SPA range mapping table copies as this will 

be utilized directly in determining the virtual addresses of the NVDIMM registers. 

Lastly, the driver uses the contained interleave description table index to find the 

interleave table that describes this NVDIMMs location in the interleave of the memory 

controller. 
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Save the Interleave LineSize, NumLines, and LineOffset[ ] – Using the 

interleave description table index, find all of the Interleave Tables that are present for 

each NVDIMM participating in each address range type. The important information in 

the interleave table is the NumLines, the LineSize, and the LineOffset[ ] array as 

described. These values will all be required to calculate the virtual address for a given 

register DPA address offset. 

Create In-Memory Virtual Address Translation Table – It is recommended that 

the driver pre-calculate the BW command, status, and beginning aperture virtual 

address at driver initialization time. See the section on programming block windows 

for the details on how this per NVDIMM interleave information will be utilized by the 

driver to calculate the virtual addresses used when accessing the block windows. 

Determining BW Control and Aperture Resources 
The NVDIMM driver searches through ACPI reserved memory to find the NVDIMM 

control region description table header that identifies this table in memory. Once the 

table has been located the driver determines the size, number, and location offset of 

the BW control and status registers utilizing that descriptor table, specifically the size 

of block control window, number of block control windows, block control start offset 

fields. See Figure 4 to get an idea of what the table looks like. The descriptor also 

defines the size of the address and status fields and their field offsets within those 

registers, specifically, the size of address field in block control windows, size of status 

field in block cntrol windows, the address field offset in block control window, and 

status field offset in block control window fields. 

The NVDIMM driver searches through ACPI-reserved memory to find the NVDIMM 

block data window region description table header, which identifies this table in 

memory. Once the table has been located, the driver determines the size, number, 

and location offset of the BW aperture registers utilizing that descriptor table, 

specifically the number of block control windows, block control start offset, size of 

block control window, command register offset in block control window, size of 

command register in block control windows, status register offset in block control 

window, and size of status register in block control windows fields. See Figure 4 to get 

an idea of what the table looks like.  

By utilizing the NFIT to parse this information, the driver can avoid utilizing the 

NVDIMM controller-specific mechanism to retrieve this information, making the driver 

more portable and less specific to a particular NVDIMM controller implementation. 

Note that with these NVDIMM descriptions each NVDIMM tilizes a unique vendor ID, 

device ID, and revision ID will have a separate unique NVDIMM block data window 

region and NVDIMM control region descriptor entries in the NFIT. This provides the 

flexibility to support multiple revisions of NVDIMMs with different block window 

characteristics in the same system. 

  



 NVDIMM Block Window Driver Writer’s Guide 

 

20  

 

NVDIMM Driver Device Discovery 

At system power-on, the BIOS detects and initializes all NVDIMM devices installed in 

the system. The BIOS then creates the NFIT, which communicates appropriate details 

on all installed NVDIMMs to the operating system.   

During initialization, it is expected that the driver will utilize the NFIT for most 

information and issue commands to each NVDIMM to collect the remaining necessary 

information utilizing the DSM interface. For details, refer to the ACPI specification NFIT 

section and the basic NFIT overview presented above. Here’s a list of the information 

the driver would typically collect during initialization: 

 Determining DPA Register Offsets – The driver reads the NFIT NVDIMM control 

region descriptor and the NFIT NVDIMM block data window region descriptor to 

obtain the offsets to all of the registers it will need to use to send BW commands, 

apertures, and receive BW status. This information is used in the NVDIMM HW 

register virtual address calculation described in detail further below in this 

document. 

 Determine NFIT Device Handle – The driver utilizes the device mapping to 

system physical address range mapping table to find the NFIT device handle it will 

need to utilize when sending NVDIMM commands via the DSM pass-through 

mechanism specified in the NFIT. 

 NVDIMM List - Determined from parsing the NFIT. 

 NVDIMM Memory Controller interleave - Determined from the NFIT Interleave 

Table. Note that the interleave affecting the BW registers of all installed DIMMs are 

required by the driver. 

 Size, Number, and Location of BW Control Registers – The driver parses the 

NFIT NVDIMM control region descriptor to determine the size of the BW control and 

status registers, the number of BW command and status registers supported by the 

NVDIMM, and the starting offset of the BW control and status registers in the 

NVDIMM register map. This information is utilized in the NVDIMM HW register 

virtual address calculation described in detail further below in this document. The 

NDIMM control region flag Bit 0 set to 1 is used as an indicator that the NVDIMM is 

buffered and will set the pending bit in the BW status register until the data transfer 

has completed. 

 Size, Number, and Location of BW Aperture Registers – The driver parses the 

NFIT NVDIMM block data window region descriptor to determine the size of the BW 

aperture registers, the number of BW apertures supported by the NVDIMM and the 

starting offset of the BW aperture registers in the NVDIMM register map. This 

information is used in the NVDIMM HW register virtual address calculation described 

in detail below in this document. 

 Retrieving NVDIMM Namespace Labels – The driver will need to utilize the 

native NFIT-specified DSM get namespace label data area size and get Namespace 

Label Data Area methods to retrieve the Namespace Labels that are stored on the 

NVDIMM. Additionally, the driver will need to use the native NFIT-specified DSM set 

namespace label data area method when creating new or modifying existing 

namespace labels on behalf of the storage management software.  
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 Retrieving SMART Health Information and SMART Thresholds – The driver 

can optionally use the native NFIT SMART and health information 

GetSmartHealthInfo DSM method to retrieve per NVDIMM SMART status.  

Asynchronous changes in SMART status on the NVDIMM can be detected by SW if 

the NVDIMM is instrumented to generate an alert and the platform BIOS provides 

an SMI handler to generate an ACPI SCI interrupt to report an ACPI NFIT Health 

Notification event to SW.  It is also possible for SW to poll for updated SMART 

status by periodically issuing this DSM method to check for SMART status changes. 

The driver can also optionally determine the current SMART thresholds that have 

been set by utilizing the native NFIT GetSmartThresholds DSM method. 

 

Clarification on SMART data: It is important to note that the NVDIMM SMART Data 

payload returned by the NVDIMM does not map directly to T10 or T13 standardized 

SMART data reported by SCSI, SATA, and NVMe storage devices.   Also the 

mechanism for retrieving SMART data from the NVDIMM is specific to the NVDIMM 

and the memory subsystem it is connected to and requires SW to utilize an NVDIMM 

specific mechanism to retrieve the SMART data.  Since the payload and mechanisms 

to retrieve the SMART data are NVDIMM specific, existing SW that interprets SMART 

data for typical legacy storage devices would need to be updated to natively support 

SMART with NVDIMMs. 

 Address Range Scrubbing – The driver can use the native NFIT QueryAddress 

RangeScrubCapabilities DSM method to determine if address range scrubbing (ARS) 

is supported by the system. Additionally, the driver can start an address range 

scrub to find poison locations in the range of the requested scrub by utilizing the 

native NFIT StartAddressRangeScrub DSM method. Lastly, the driver can determine 

if an ARS is in progress and retrieve the resulting error log for the platform when 

the ARS completes by utilizing the QueryAddressRangeScrubStatus DSM method. 

Note that these methods are all addressed to the root ACPI namespace device and 

do not require an NFIT device handle. See the section on error handling for more 

details on possible driver uses of these ARS commands. 

 

ADR 

The platform containing the NVDIMMs must utilize the ADR HW logic and appropriate 

power supply to guarantee that all writes in the ADR Domain will be written to the 

NVDIMM’s durability domain on a power failure.  This logic is utilized for planned 

power down sequences including warm reset, S3, S5, as well as unplanned loss of 

power sequences. 

Determining ADR Success 

There are two mechanisms for SW to determine if an NVDIMM has successfully written 

all outstanding write data in the ADR Domain to the NVDIMM’s durability domain on a 

planned shutdown sequence or unplanned power lost sequence.  See the V1.3 DSM 

specification for details of these fields: 

DSM SMART Health Info output payload LSS indicator:  Last Shutdown Status 

(LSS) will be set to 0 by the NVDIMM if the last shutdown was successful (a clean 

shutdown) or will be set to non-zero if the last shutdown was un-successful (a dirty 

shutdown). 
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DSM SMART Health Info output payload Unsuccessful Shutdown Count:  This 

counter will be incremented by the NVDIMM each time an unsuccessful (dirty) 

shutdown in recorded by the NVDIMM. 

WPQ Flush and ACPI NFIT Flush Hint Addresses 

If the platform BIOS creates Flush Hint Address descriptor tables (see NFIT Parsing 

section) the driver is required to utilize those addresses when executing BW Block 

Aperture interface read and write block sequences.  In general: 

 How to execute a WPQ Flush: By writing any value in to one of the Flush 

Hint addresses for a given memory controller the driver can force any write 

data in the memory controller to be written to the NVDIMMs durability 
domain.  The Flush Hint addresses are located in UC (uncached) memory so 
the WPQ Flush write needs to be followed with an SFENCE but does not need 
to flush cpu caches for the flush to take effect. 

 Multiple Flush Hint addresses: If multiple Flush Hint addresses are 

available for a given memory controller, the driver is free to choose any 
address.  For performance reasons, it is recommended that the driver 
implement a least recently used or random address selection when picking the 
next Flush Hint address.   

 No Flush Hint addresses: If no Flush Hint address is available for a given 
memory controller, the platform is utilizing another mechanism for 
guaranteeing that data written to the memory controller is also written to the 

NVDIMM’s durability domain, and there is no further steps for the driver to 
execute. 

There are other situations beyond the programming of the BW Block Aperture 

interface where the driver will also take advantage of the WPQ Flush functionality.  

These cases reduce the amount of data that needs to be written to the NVDIMMs 

durability domain by the ADR HW logic on a power failure.  These cases are also 

important for minimizing the SW data recovery that is required if ADR is not able to 

completely write all of the outstanding write data to the NVDIMM’s durability domain. 

 Flushing file contents: When the filesystem is requested to flush the 

contents of a persistent memory backed file (for example when an application 
msync’s a file or requests a flush view of file) the NVDIMM driver should issue 
a WPQ Flush to each memory controller in the interleave set where the file is 
stored.  

 Synchronizing storage device caches: The NVDIMM driver that interfaces 
to block storage and surfaces Block over byte-addressable pmem devices may 
receive requests from the block storage stack to synchronize caches (for 

example ”SCSI Synchronize Cache” request).  In response to these requests, 

the driver should issue WPQ Flush requests to each memory controller in the 
interleave set where the file is stored. 

 Power down and driver unload sequences:  For any planned power 
sequence where power is going to be removed, or if the driver is unloaded 
while the system is running, the driver should issue a WPQ Flush to each 
memory controller in the system. 
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Issuing DSM Commands to the NVDIMM  

The DSM specification and ACPI Specification outline the NVDIMM-agnostic interface 

that the driver should utilize for communicating NVDIMM commands with the NVDIMM 

required for NVDIMMs adhering to format interface code 1. This interface is based on 

the driver building a payload and sending it to the BIOS via a Device Specific Method 

or DSM. By having the BIOS handle these requests the implementation details of a 

specific NDIMMs interface are hidden from the driver, allowing the driver to implement 

a management interface that can work for multiple NVDIMM implementations. The 

NFIT specification outlines the DSM payload fields and specific data payloads for 

GetSmartHealthInformation, GetNamespaceLabelDataAreaSize, 

GetNamespaceLabelDataAreaData, SetNamespaceLabelData, address range scrub, 

and a vendor specific pass-through command. The latter interface is utilized by the 

driver for any commands not specifically specified in the NFIT specification. 

The DSM interface is synchronous meaning that the call to the ACPI stack to send the 

message will not complete until the underlying command to the NVDIMM has 

completed. However, the address range scrubbing (ARS) DSM command will return 

once the scrub has been initiated (via the start ARS command) and the driver will 

need to re-submit the command (using the query ARS status) to poll for ARS 

completion. 

The DSM message consists of a UUID that defines the DSM interface, the revision ID, 

the function index (essentially the opcode), followed by the DSM payload. In general 

the DSM payload contains the NFIT device handle, followed by some number of bytes 

of input data, status, and some number of bytes of output data. The NFIT device 

handle is found in the device mapping to system physical address range mapping 

table, as specified in the ACPI NFIT Specification. The UUID and revision ID are also 

specified in the NFIT specification. 

Preconditions:  

 The NVDIMM driver has an OS-specific mechanism to send DSM messages to the 
BIOS. 

 The NVDIMM driver has determined the NFIT device handle (from the NFIT) for the 
specific NVDIMM it wishes to send the NVDIMM command to. 

 The NVDIMM driver has a NVDIMM command to send, formatted per the DSM 
specification. 

 The NVDIMM driver has the NVDIMM command payload, if any, to send, formatted 
per the NFIT specification. 

Steps: 
1. The NVDIMM driver builds the DSM message per the NFIT specification 

formatting. 

2. The NVDIMM driver sends the DSM message to the BIOS code and when the 

message is completed back to the driver, it checks the resulting Status in the 

output payload to verify the completion status of the command. Note that for 

the address range scrub command (start ARS) the driver will need to send 

further commands (query ARS status) to poll for the final completion 
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Block Windows 

The block window aperture mechanism allows software access to data in persistent 

memory without mapping the entire persistent memory range into the kernel’s virtual 

address space. The accessible range of persistent memory therefore may exceed the 

available SPA space and/or kernel virtual address space supported by the host OS. A 

positive side-effect of the block window aperture architecture is that large ranges of 

persistent memory are not exposed to stray writes from faulty or malicious kernel 

code. 

Each NVDIMM has some number of block windows (BWs) for use with the NVDIMM 

block window interface. The exact number of BWs, their location, and their size is 

found using the NFIT. See the following sections that outline the details of how the 

block window interface is programmed by the driver. 

A Block Window contains three things: 

 Command Register - Points the BW to a specific DPA, sets the direction for the 

transfer, and the size of the transfer 

 8k Aperture - Provides a window to allow access to the data at the target DPA 

 Status Register - Latches errors during transfers, cleared by setting the command 

register 

Some basic points about using Block Windows: 

 Every NVDIMM requires the use of block window registers that are specific to that 

NVDIMM. 

 Since each NVDIMM has multiple block windows, many parallel operations can be 

carried out on the same NVDIMM at the same time. 

 Each block window is used for the transfer of one logical block of data. Multi-block 

transfers are done by transferring individual blocks with BW command register 

programming in between each block. 

 Block Windows can be reused immediately upon completion of a data transfer. 

There is no performance advantage to switching BWs between transfers. 

 Moving data through a block window aperture utilizes load and store instructions 

that operate on virtual addresses. Because of this, drivers do not need to use 

physical DMA scatter gather lists and can simply use the virtual addresses of the 

host data buffers. 

 Each NVDIMM supports an equal number of BW command, status, and aperture 

registers, so multiple overlapped IO can move data through the NVDIMM at the 

same time. 

Driver threads taking ownership of a BW must follow these basic rules or risk data 

corruption: 

 After the driver selects the BW command and aperture registers and calculates the 

DPA for the block window transfer, interleaving is taken in to account by calculating 

the virtual address for both registers. The driver uses the virtual address to 
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program the BW command and to copy the data in/out of the aperture. The driver 

moves the data based on the LineSize of the interleave that is in effect and must re-

calculate the register aperture virtual address for the data movement at each 

LineSize interval. The driver uses the NFIT interleave table to calculate these virtual 

register addresses, which takes in to account the interleaving in affect. See the 

following sections that outline the details of how the virtual register address is 

calculated. 

 BW command register must be programmed with appropriate R/W bit and transfer 

size individually for each block transfer. The transfer size is the size of a logical 

block in 64-byte cache line increments. While the aperture size is 8k, only one block 

of data can be moved through an aperture at a time, and the any unused space in 

the aperture is not utilized. 

 After writing the BW command register to reprogram the aperture, cached data 

from previous BW use may still be sitting in cache. So before reading from the 

aperture the data must be invalidated using CLFLUSHOPT (the lines cannot be dirty 

due to these rules, so CLFLUSHOPT acts like an invalidate operation). Exception: If 

the Block Data Window Invalidation Required bit is clear in the NVDIMM flags field 

returned by the GetBlockNvdimmFlags DSM command, then the NVDIMM does not 

require flushes before BW reads for that device.  

 Writes done through the aperture must be done using non-temporal instructions or 

must be followed by CLFLUSHOPTs so no dirty cache lines exist when the BW is 

released. 

For performance, not correctness, this rule should also be followed: 

 A block write via a BW should not be pre-emptible (the entire block transfer 

happens on the same CPU). 

Warning: Attempting to utilize the same physical portions of an NVDIMM for block windows and 
direct persistent memory access, at the same time, will lead to undefined behavior! 

While these regions can all be used on each NVDIMM at the same time, on the same 

NVDIMM, the regions cannot overlap one another.  It is the responsibility of the driver 
and management SW to enforce this rule. 

Block Window Register Definition 
 

Figure 3 - BW Command and Address Register Format shows the format for the BW 

command and address register. The first 37 bits of a BW address are programmed 

with the DIMM physical address (DPA) for the block window transfer, shifted right 6 

bits to make the address a 64-Byte cache line relative address. 
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SIZE BW ADDRESS

BLOCK WINDOW  HW REGISTER FORMAT – BW COMMAND/ADDRESS REGISTER

RESERVED BW ADDRESSCMD

BIT  63             57     56    55        48 47             37 36                    32 31                                                                    0

FIELD DESCRIPTION

BW ADDRESS [31:0] The BW Cache Line Relative DPA Address [37:6] for the request

BW ADDRESS [36:32] The BW Cache Line Relative DPA Address [42:38] for the request

SIZE The size of the BW transfer in number of cache lines.  

COMMAND Bit [56] is 1 – Write Command

Bit [56] is 0 – Read Command

DPA ADDRESS

BIT  42                     38 37                                                                    6 5           0

RESERVED

 

Figure 3 - BW Command and Address Register Format 

The transfer size is the number of cache lines of data that the request will move based 

on a 64-Byte cache line utilized by all of the Intel® Architecture platforms that 

support the NVDIMM. The maximum transfer size supported by the NVDIMM is 128 

cache lines for a maximum logical block size of 8192 bytes. Only the lowest bit 56 of 

the command is currently used where a 1 is a write and a 0 is a read request. The 

NVDIMM will use this setting to determine if any data moves through the aperture in 

an unexpected direction. See the status register description below for direction error 

reporting.  

Figure 4 - BW Status Register Format describes the format of the block window status 

register.  

 

Figure 4 - BW Status Register Format 

The INVALID ADDRESS bit indicates the DPA specified in the BW address register is 

not a valid address for the NVDIMM being accessed. The NVM UE bit indicates that an 

uncorrectable ECC error occurred while attempting to access the NVDIMM at the DPA 

BW address programmed. The NVDIMM HW checks the direction of the data 

movement within the BW aperture against the command bit specified in the BW 
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command register and indicates a read miss-match utilizing the READ MISSMATCH 

status bit. Finally a data movement utilizing a locked DPA range will result in the DPA 

RANGE LOCKED bit being set.  Likewise a data movement utilizing a disabled BW 

region will result in setting the BW DISABLED bit. If all of the utilized bits described 

here are 0, the BW transfer succeeded.   

Note: The driver cannot assume the value of the RESERVED bits in the status register 

are zero.  These reserved bits need to be masked off, and the driver must avoid 

checking the state of those bits.  

The PENDING bit is utilized for those NVDIMM implementations that do not complete 

the BW aperture data transfer before the time the status register is read. The NFIT 

NVDIMM control region table, NVDIMM control region flag Bit 0 set to 1 indicates that 

the NVDIMM is buffered and will set the pending bit in the BW Status register until the 

data transfer has completed. This bit is for supporting NVDIMM implementations that 

require the driver to poll for BW data transfer completion. It is up to the driver author 

to determine if buffered NVDIMMs will be used with the driver and handle the pending 

bit being set. 

The BW Status Register is cleared by the NVDIMM when the BW Command and 

Address Register is written by SW. 

Figure 5 – BW Aperture Register Format shows the 8KB aperture format utilized for 

block-sized data movement through the block window hardware. The driver must 

calculate the SPA virtual address for each LineSize amount of data that is transferred 

to account for the memory controller’s interleaving of data. 

 

 

APERTURE APERTURE

BYTE      8191                                                                                                            0

FIELD DESCRIPTION

APERTURE The NVDIMM HW Window into 8k of the Persistent Memory 

whose address is the lower 37 bits of the BW Command/Address 

register

BLOCK WINDOW  HW REGISTER FORMAT – BW APERTURE REGISTER

 

Figure 5 – BW Aperture Register Format 

Calculating Register SPA and Virtual Addresses  
In order for the driver to take memory controller interleave in to account when 

reading and writing the BW registers, the register offset in the NVDIMM register layout 

is run through a series of calculations to find the relevant NVDIMM HW register system 

physical address (SPA). The SPA is then converted to a NVDIMM HW register virtual 

address. These calculations are based on the NIFT table in general and specifically the 

interleave table for each NVDIMM. So once the NVDIMM for the request has been 

determined, that NVDIMM’s interleave table will be referenced by the driver to 

calculate the driver’s virtual address used for each register access. This will account 
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for the starting offset and will skip required holes in the address space for the 

interleave.   

Before detailing the driver calculations that are performed to get the SPA and the 

NVDIMM HW register virtual address, it is important to know some of the background 

in how the HW is set up and how the interleave works. This will make the NFIT 

Interleave Tables and the NVDIMM HW Register Virtual Address calculation easier to 

understand, detailed later in this section. 

Memory Controllers, Channels, Multi-Way Channel Interleave 
BW registers can exist in an interleave of multiple NVDIMMs and because of this, the 

driver needs to account for the interleaving that’s in effect when accessing BW 

registers. This will be discussed in detail in the Block Window section of this 

document. 

Figure 6 - Memory Controller TopologyFigure 6 - Memory Controller Topology shows a 

basic high-level diagram of a platform containing NVDIMMs to help describe how CPU, 

Internal Memory Controllers, Memory Channels, DRAM DIMMs, and NVDIMMs are 

related. The InterleaveWays is the number of NVDIMMs connected to each internal 

memory controller multiplied by the number of internal memory controllers being 

utilized for the socket. The driver uses the InterleaveWays value to calculate the 

NVDIMM HW register virtual address used for writing the block window command 

registers and BW apertures, and for reading the BW status register. 
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Figure 6 - Memory Controller Topology 

Figure 7 - Memory Controller Interleave is a basic diagram explaining memory channel 

interleave and the concepts of interleaving, LineSize, NumLines, and RotationSize. The 

driver will utilize these variables when calculating the NVDIMM HW register virtual 
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address used for writing the block window command and BW apertures, and for 

reading the BW status register. 
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LineSize = The number of bytes of data transferred per Memory Channel before moving to the 
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NumLines = The total number of lines that make up a repeating pattern for the Memory Controller’s 
Interleaving.  This is dependent on the number of iMCs present, the LineSize being utilized and the 
total number of NVDIMMs that are involved in the interleave (InterleaveWays).

 

Figure 7 - Memory Controller Interleave 

Interleaving with Persistent Memory 
Regions of the NVDIMMs that are configured as persistent memory will utilize memory 

controller interleave, which is factored in to the SPA range. The SPA range is described 

in the NFIT, system physical address range descriptor with address range type 1. 

Since the SPA range is accessed directly with load/store instructions and does not 

make use of NVDIMM registers like the block window interface does, the driver does 

not need to account for interleaving when calculating virtual addresses. 

If an NVDIMM is added to the system and is configured as persistent memory, a new 

interleave set will be created for the new persistent memory when the system is next 

rebooted. So any persistent memory that has been added to the system shows up as 

a new interleave set, leaving the existing sets undisturbed.  

NVDIMM HW Register SPA and Virtual Address Calculation 
The driver communicates with the NVDIMM via registers that the BIOS has mapped 

into the SPA space. Since these registers exist in memory that is interleaved by the 

memory controller, the driver must calculate the NVDIMM HW register virtual address 

for every BW command and status register or BW aperture it is going to access by first 

calculating the SPA of the register. 

The NVDIMM HW register calculation requires the register address offset for the 

register being accessed by the driver and the specific NVDIMM described by the 

namespace for the IO being accessed. The register address offset for BW command 

registers is found by referencing the NFIT NVDIMM control region table, command 

register offset in block control region and size of command register in block control 

window. The register address offset for BW status registers is found by referencing the 

NFIT NVDIMM control region table, status register offset in block control region and 

size of status register in block control window. Likewise, to find the register address 

offset for BW aperture registers, reference the NFIT NVDIMM block data window 

region table, block data window start offset and size of block data window. 
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Virtual Address Calculation with Interleave 
Figure 8 – Virtual Address Calculation with InterleaveFigure 8 – Virtual Address 

Calculation describes the calculations the driver must execute to determine the kernel 

system virtual address for any NVDIMM HW register when an interleave is present. 

The figure also contains the data required for each calculation and the NFIT Table 

references required to complete the calculation steps. The calculation will require 

access to the NFIT system physical address range description table, memory device to 

SPA range mapping table and the interleave table, probably cached in driver memory 

for quick efficient access. The NVDIMM described by the namespace for this IO is 

utilized for all references to the NFIT tables which are used to find the LineSize, 

NumLines, InterleaveWays, and LineOffset. Note that the StartingPhysAddress is 

calculated at driver initialization time when the NFIT is parsed for each of the NFIT 

address ranges. The same steps are used to determine the SPA for the address type 2 

control registers including block control and status registers, and address type 3 block 

apertures simply by replacing the StartingPhysAddress with the address for that 

region.  
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Here are the basic execution steps for calculating the NVDIMM HW Register Address 

for any NVDIMM: 

1. Calculate the starting virtual address of the memory region – The driver 

uses mapping address range type 2, control region, when finding the virtual 
address for block control, and block status registers. Likewise the mapping 
address range type 3 is used when finding the virtual address for the block 
window apertures. The desired address range type is used to access the NFIT 
system physical address range description table and find the physical address the 
BIOS has mapped, the StartingPhysAddress.   

2. InterleaveWays –The driver determines the number of NVDIMMs taking part in 

the interleave of the memory controller by accessing the specific NFIT memory 
device to system physical address range mapping table. The driver determines the 
NVDIMM from the namespace for this IO and stores the reported InterleaveWays.  

3. LineSize, NumLines – Using the NVDIMM described by the namespace for this 

IO, the driver selects the NFIT interleave description table and stores the reported 
LineSize and NumLines for use in calculating the LineNumber, RotationSize, and 
Remainder. The LineSize is the number of bytes the internal memory controller 
will transfer in one memory channel request. NumLines represents the minimum 

number of lines in the interleave set before the interleave pattern repeats. 
4. LineNumber = (Register Offset % RotationSize) / LineSize – The specific 

line number the driver will use as an index in to the NFIT Interleave Table 
LineOffset[ ] array. 

5. RotationSize = LineSize * NumLines – The minimum number of bytes in the 
interleave set before the interleave pattern repeats. 

6. RotationNumber = Register Offset / RotationSize – Which rotation the 

register access is in based on the minimum number of bytes in the interleave set. 
7. Remainder = Register Offset % LineSize – Any bytes less than the LineSize of 

256Bytes is considered the remainder that must be added in to the NVDIMM HW 

register virtual address. 
8. LineOffset – The driver accesses the NFIT interleave description table for the 

specific NVDIMM described by the namespace for this IO and uses the LineNumber 

calculated in step 4 to retrieve the LineOffset array value, LineOffset[ LineNumber 
]. This is the interleave offset to be applied for the given LineNumber. 

9. Register SPA = RotationSize * RotationNumber * InterleaveWays + 
LineOffset + Remainder + StartingPhysAddress – This is the physical 
address for the desired register. 

10. NVDIMM HW Register VA – The virtual address for the register SPA is found 
using OS-specific means. This is virtual address the driver uses to access the 
desired register. 
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Figure 8 – Virtual Address Calculation with Interleave 
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Virtual Address Calculation without Interleave 
Figure 9 - Virtual Address Calculation without Interleave describes the Virtual Address 

calculation for each register when no interleave is present.  This calculation simplifies 

to: 

1. Register SPA = Register Address Offset + StartingPhysAddress . –

The physical address for the desired register. 

2. NVDIMM HW Register VA – The virtual address for the Register SPA is 

found using OS-specific means. The driver uses this virtual address to 
access the desired register. 
 

Released to Microsoft under CITA-A #INTC123688_A Add-1
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Figure 9 - Virtual Address Calculation without Interleave 
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Block Window Aperture Programming 
This section provides the details of the final BW Aperture memcopy loop, which moves 

Line Size number of Bytes of data to/from the Aperture using the NVDIMM HW 

register address calculation and the virtual address of the host I/O request buffer.  

Figure 10 - Block Window Programming Sequence demonstrates the sequence the 

driver executes to transfer data utilizing a block window.   
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Figure 10 - Block Window Programming Sequence 
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The following BW programming steps are shown in Figure 10 - Block Window 

Programming Sequence: 

STEP DESCRIPTION 

INIT TIME Driver builds a virtual address table of BW command, status, and aperture 
registers 

1 Driver selects a BW command, status, and initial aperture for the IO 
request, from virtual memory utilizing pre-initialized driver tables  

2 Driver translates the host LBA to a NVDIMM relative LBA with write 
atomicity (if present) accounted for 

3 Driver translates NVDIMM relative LBA in to a namespace offset 
4 Driver calculates the DIMM physical address (DPA) from the namespace 

offset  

5 Driver writes the DPA in to the virtual BW command register 
6 Driver executes load/store instructions to memcopy the first LineSize 

amount of data utilizing the starting virtual BW aperture address and the 
IO buffer virtual address 

7 Driver increments the BW aperture address by the LineSize and calculates 
the next virtual address for the next portion of the BW aperture  

8 Driver executes load/store instructions to memcopy the next LineSize 
amount of data utilizing the BW apertures virtual address and the next 
portion of the IO buffer virtual address 

9 Steps 7 and 8 are repeated until all data for the logical block has been 
transferred 

10 The driver reads the final BW status using the block window status 
register’s virtual address 
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Basic Driver Storage Mode Block Execution Flows 

This section describes the basic high-level flows the NVDIMM driver uses to perform 

block mode reads and writes. For more in-depth execution flows, see the sample Linux 

Block Driver. 

 

Additional notes that apply to the flows are outlined below: 

 “if (FlushRequired)” – true if the NVDIMM requires CPU cache flushes after BWs 

have been moved. This is indicated in the Block Data Window Invalidation Required 

flag returned as a response to the GetBlockNvdimmFlags DSM command. 

 The BW Status register is assumed to not set bit 31, the pending status bit, and 

these flows do NOT account for the pending status the NVDIMM returns.  

 Any of the steps that require a virtual address to be calculated for a register access 

can be implemented with a pre-initialized table. This allows the address translation 

to be calculated at driver initialization time, removing those calculations from the 

run time IO path. 

 Note that the namespace labels specified in the NVDIMM Namespace Specification 

support a physical block size on the media that is larger than the logical block size 

reported to the host operating system. The physical block size utilized with the BW 

aperture must be a multiple of 64 bytes since data is moved with cache line 

granularity. The logical block size does not have such restrictions. The following 

flows do not show the required logic for handling logical block sizes < physical block 

size, but it is easy to use a scratch buffer to load or store the remaining number of 

bytes (physical block size – logical block size) after the required load/store transfer 

of the logical block size number of bytes to/from the host data buffer has occurred. 

Since the bytes transferred in/out of the scratch buffer are not part of the host IO 

transfer, the additional transfer is only used to satisfy the BW HW and the data is 

thrown away. This solution wastes space in between each logical block but makes 

the implementation easy. 

The use of ADR is now required for support of NVDIMMs.  The addition of ADR means 
that applications no longer need to explicitly commit data to the NVDIMM when 
utilizing App-Direct mode.  For Storage Mode, drivers are still responsible for 
committing updates to the BW Command register to the NVDIMM and committing 
write data moved through the BW Aperture Register to the NVDIMM by utilizing the 
WPQ Flush feature.  
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Block Read 
The following execution steps should be followed when reading a single logical block. 

This sequence of steps is repeated for each logical block being transferred: 

1) Map the destination buffer for write access from kernel virtual. 
2) Determine the external LBA for the I/O request. 
3) Pass the external LBA to the BTT IO layer to calculate the proper post-map 

LBA for the request based on whether write atomicity is being utilized and the 
size and number of free blocks in the BTT. See the NVDIMM Namespace 
Specification for details on this step. 

4) Translate the post-map LBA in to namespace offset. 
5) Translate the namespace offset in to the DPA. 
6) Using the NVDIMM described by the namespace for this IO, select an available 

BW command register, status register and BW aperture. 

7) Calculate the command register virtual address using the driver-derived 
interleave information, and program the BW command register with the DPA, 
read mode, and LBA size. 

8) Make command register update durable: Using the memory controller 

described by the ACPI NFIT tables for the NVDIMM for this IO, get a Flush Hint 

Address for this controller and perform a WPQ Flush by executing a store with 

any data value to the Flush Hint Address (which are in UC domain), followed 

by an SFENCE. 

9) Flush cache if FlushRequired.  This will flush cache of possible stale data from 
prior use of BW Aperture.  Use CLFLUSHOPT of each cache line in the block 
starting with the BW address for size of block, followed by SFENCE 

10) Calculate the BW aperture register virtual address using the driver-derived 

interleave information, and move the interleave LineSize number of bytes of 
data from the BW aperture to the destination buffer virtual address. Increment 
the BW aperture and destination buffer by the LineSize and repeat this step 

until the entire logical block has been copied. 
11) Calculate the BW status register virtual address using the driver-derived 

interleave information, and check the corresponding BW status register for 
any errors. 

12) Release the BW resources and unmap the destination buffer. 
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Block Write 
The following execution steps should be followed when writing a single logical block. 

This sequence of steps is repeated for each logical block being transferred: 

1) Map the source buffer for read access from kernel virtual address space. 
2) Determine the external LBA for the IO request. 
3) Pass the external LBA to the BTT IO layer to calculate the proper post-map 

LBA for the request based on whether write atomicity is being used and the 
size and number of free blocks in the BTT. See the NVDIMM Namespace 
Specification for details on this step. 

4) Translate the Post-Map LBA in to namespace offset. 
5) Translate the namespace offset in to the DPA. 
6) Using the NVDIMM described by the namespace for this IO select the 

appropriate BW command register, status register and BW aperture. 
7) Calculate the Command register virtual address using the driver derived 

interleave information, and program the BW command register with the DPA, 
write mode, LBA size.  

8) Make command register update durable: Using the memory controller 

described by the ACPI NFIT tables for the NVDIMM for this IO, get a Flush Hint 

Address for this controller and perform a WPQ Flush by executing a store with 

any data value to the Flush Hint Address (which are in UC domain), followed 

by an SFENCE. 

9) Calculate the BW aperture register virtual address using the driver-derived 

interleave information, and non-temporal move the interleave LineSize 
number of bytes of data from the source buffer virtual address to the BW 
aperture (uses non-temporal store instructions). Increment the BW aperture 
and source buffer by the LineSize and repeat this step until the entire logical 
block has been copied.  Issue SFENCE. 

10) Make writes through the aperture durable: Using the memory controller 

described by the ACPI NFIT tables for the NVDIMM for this IO, get a Flush Hint 

Address for this controller and perform a WPQ Flush by executing a store with 

any data value to the Flush Hint Address (which are in UC domain), followed 

by an SFENCE. 

11) Calculate the BW status register virtual address using the driver-derived 
interleave information, and check the corresponding BW status register for 
any error.  

12) Using the allocated post-map LBA from step #3 above, utilize the BTT IO layer 
to update the on-media BTT metadata based on the write atomicity and free 
block settings configured. See the NVDIMM Namespace Specification for 
details on this step. 

13) Release the BW resources and unmap the source buffer. 

Block Flush 
Since all block window writes are made persistent before the writes are completed 

back to the host, there is never any write data that needs to be made persistent at a 

later point in time. Thus block flush or synchronize cache requests from the host can 

be treated as NO-OPs. 


