
C H A P T E R 3

Operating System
Support for Persistent
Memory

In the previous chapter, we described how persistent memory is incorporated into the

computer hardware architecture. In this chapter, we describe how operating systems

manage persistent memory as a platform resource and describe the options they

provide for applications to use persistent memory. We start by comparing memory

and storage in popular computer architectures and then describe how operating

systems have been extended for persistent memory.

Operating System Support for Memory and

Storage

Figure 3-1 shows a simplified view of how operating systems manage storage and

volatile memory. As shown, the volatile main memory is attached directly to the

CPU through a memory bus. The operating system manages the mapping of

memory regions directly into the application’s visible memory address space.

Storage, which usually operates at speeds much slower than the CPU, is attached

through an input/output (I/O) controller. The operating system handles access to the

storage through device driver modules loaded into the operating systems I/O

subsystem.

CHAPTER 3

2

The combination of direct application access to volatile memory combined

with the operating system I/O access to storage devices supports the most common

application programming model taught in introductory programming classes. In this

model, developers allocate data structures and operate on them at byte granularity in

memory. When the application wants to save data, it uses standard file API system

calls to write the data to an open file. Within the operating system, the file system

executes this write by performing one or more I/O operations to the storage device.

Because these I/O operations are usually much slower than CPU speeds, it is typical

for the operating system to suspend the application until the I/O completes.

Since persistent memory can be accessed directly by applications and can

persist data in-place, it allows operating systems to support a direct programming

model. Fortunately for application developers, while the first generation of persistent

memory was under development, Microsoft Windows and Linux designers

collaborated in the Storage and Networking Industry Association (SNIA) to define this

new programming model. This is described in the SNIA NVM Programming Model

Specification (https://www.snia.org/tech_activities/standards/curr_standards/npm).

Figure 3-1: Storage and volatile memory in the operating system

https://www.snia.org/tech_activities/standards/curr_standards/npm

CHAPTER 3

3

Both Linux and Windows comply with this specification. As a result, the

operating system support described in this chapter is common to at least the

Windows and Linux operating systems. The programming model specification

describes multiple ways that applications can use persistent memory along with the

operating system extensions to support those programming options and are

described in the remainder of this chapter.

Persistent Memory as Block Storage

The first operating system extension for persistent memory is the ability to detect the

existence of persistent memory modules and load a device driver into the operating

system’s I/O subsystem as shown in Figure 3-2. This driver is called an NVDIMM

driver and serves two important functions. First, it provides an interface for

management and sysadmin utilities to configure and monitor the state of the

persistent memory hardware and is similar to the functionality provided by storage

device drivers.

Figure 3-2 Persistent Memory as Block Storage

CHAPTER 3

4

The NVDIMM driver presents persistent memory to applications and

operating system modules as a fast block storage device. This means applications,

file systems, volume managers and other storage middleware layers can use

persistent memory the same way they use storage today, without modifications.

Figure 3-2 also shows a driver that can be optionally configured into the I/O

subsystem called the Block Translation Table (BTT) driver. Storage devices such

as HDDs and SSDs present a native block size with 512 and 4k bytes as two

common native block sizes. Some storage devices, especially server-class storage,

provide a guarantee that when a power failure or server failure occurs if a block write

is in-flight, either all or none of the block will be written. The BTT driver is included to

provide the same guarantee when using persistent memory as a block storage

device. Most applications and files systems depend on this atomic write guarantee

and should be configured to use the BTT driver although operating systems also

provide the option to bypass the BTT driver for applications that implement their own

protection against partial block updates.

Persistent Memory Aware File Systems

The next extension to the operating system is to make the file system aware of and

optimized for persistent memory. File systems that have been extended for

persistent memory include Linux ext4 and XFS, and Windows NTFS. As shown in

Figure 3-3, these file systems can use the block driver in the I/O subsystem as

described in the previous section or can bypass the I/O subsystem to directly use

persistent memory as byte-addressable load/store memory as the fastest and

shortest path to data stored in persistent memory. In addition to eliminating the I/O

operation, this path enables small data writes to be executed faster than traditional

block storage devices which require the file system to read the device’s native block

size, modify the block, then write the full block back to the device.

CHAPTER 3

5

Figure 3-3 Persistent Memory Aware File System

These persistent memory aware file systems continue to present the familiar,

standard file APIs to applications including the open, close, read and, write

system calls. This allows applications to continue using this familiar file system APIs

while benefiting from the higher performance of persistent memory.

Memory Mapped Files

Before describing the next operating system option for using persistent memory, we

review memory mapped files in Linux and Windows. When memory mapping a file,

the operating system allocates a portion of main memory, maps that memory into the

application’s virtual address space, and maintains a correlation between the portion

of the file in memory, and the on-disk copy of the file. This allows an application to

access and modify file data as byte-addressable in-memory data structures. This

has the potential to improve performance and simplify application development,

especially for applications that make frequent, small updates to file data.

Applications memory map a file by first opening the file, then passing the

resulting file handle as a parameter to the mmap() system call in Linux or to

MapViewOfFile() in Windows. Both return a pointer to the in-memory copy of a

CHAPTER 3

6

portion of the file. Listing 3-1 shows an example of Linux C code that memory maps

a file, write data into the file by accessing it like memory, and then uses the msync

system call to perform the I/O operation to write the modified data to the file on the

storage device. Listing 3-2 shows the equivalent operations on Windows. We will

walk through and highlight the key steps in both of these code samples.

Listing 3-1 Memory mapped file on Linux Example

50 #include <err.h>

51 #include <fcntl.h>

52 #include <stdio.h>

53 #include <stdlib.h>

54 #include <string.h>

55 #include <sys/mman.h>

56 #include <sys/stat.h>

57 #include <sys/types.h>

58 #include <unistd.h>

59

60 int

61 main(int argc, char *argv[])

62 {

63 int fd;

64 struct stat stbuf;

65 char *pmaddr;

66

67 if (argc != 2) {

68 fprintf(stderr, "Usage: %s filename\n", argv[0]);

69 exit(1);

70 }

71

72 if ((fd = open(argv[1], O_RDWR)) < 0)

73 err(1, "open %s", argv[1]);

74

75 if (fstat(fd, &stbuf) < 0)

76 err(1, "stat %s", argv[1]);

77

78 /*

79 * Map the file into our address space for read & write.

80 * Use MAP_SHARED so stores are visible to other

programs.

81 */

CHAPTER 3

7

82 if ((pmaddr = mmap(NULL, stbuf.st_size,

83 PROT_READ|PROT_WRITE,

84 MAP_SHARED, fd, 0)) == MAP_FAILED)

85 err(1, "mmap %s", argv[1]);

86

87 /* don't need the fd anymore, the mapping stays around */

88 close(fd);

89

90 /* store a string to the File */

91 strcpy(pmaddr, "This is new data written to the file");

92

93 /*

94 * Simplest way to flush is to call msync(). The length

95 * needs to be rounded up to a 4k page.

96 */

97 if (msync((void *)pmaddr, 4096, MS_SYNC) < 0)

98 err(1, "msync");

99

100 printf("Done.\n");

101 exit(0);

102 }

 Lines 67-73: We verify the caller passed a file name that can be

opened. The open call will create the file if it does not already

exist.

 Line 75: Here we retrieve the file statistics in order to use the

length when we memory map the file.

 Line 82: Here we map the file into the application’s address space

to allow our program to access the contents as if in memory. In

the second parameter, we pass the length of the file, requesting

Linux to initialize memory with the full file. We also map the file

with both READ and WRITE access and also as SHARED

allowing other processes to map the same file.

 Line 88: We retire the file descriptor which is no longer needed

once a file is mapped.

 Line 91: Here we write data into the file by accessing it like

memory through the pointer returned by mmap.

 Line 97: Here we explicitly flush the newly-written string to the

backing storage device.

CHAPTER 3

8

Listing 3-2 shows an example of C code that memory maps a file, writes data

into the file, then uses the FlushViewOfFile() and FlushFileBuffers() system calls to

flush the modified data to the file on the storage device.

Listing 3-2 Memory mapped file on Windows Example

45 #include <fcntl.h>

46 #include <stdio.h>

47 #include <stdlib.h>

48 #include <string.h>

49 #include <sys/stat.h>

50 #include <sys/types.h>

51 #include <Windows.h>

52

53 int

54 main(int argc, char *argv[])

55 {

56 if (argc != 2) {

57 fprintf(stderr, "Usage: %s filename\n",

argv[0]);

58 exit(1);

59 }

60

61 /* Create the file or open if the file already

exists */

62 HANDLE fh = CreateFile(argv[1],

63 GENERIC_READ|GENERIC_WRITE,

64 0,

65 NULL,

66 OPEN_EXISTING,

67 FILE_ATTRIBUTE_NORMAL,

68 NULL);

69

70 if (fh == INVALID_HANDLE_VALUE) {

71 fprintf(stderr, "CreateFile, gle: 0x%08x",

72 GetLastError());

73 exit(1);

74 }

75

76 /* Get the file length for use when memory mapping

later */

77 DWORD filelen = GetFileSize(fh, NULL);

CHAPTER 3

9

78 if (filelen == 0) {

79 fprintf(stderr, "GetFileSize, gle:

0x%08x",

80 GetLastError());

81 exit(1);

82 }

83

84 /* Create a file mapping object */

85 HANDLE fmh = CreateFileMapping(fh,

86 NULL, /* security attributes */

87 PAGE_READWRITE,

88 0,

89 0,

90 NULL);

91

92 if (fmh == NULL) {

93 fprintf(stderr, "CreateFileMapping, gle:

0x%08x",

94 GetLastError());

95 exit(1);

96 }

97

98 /* Map into our address space and get a pointer to

the beginning */

99 char *pmaddr = (char *)MapViewOfFileEx(fmh,

100 FILE_MAP_ALL_ACCESS,

101 0,

102 0,

103 filelen,

104 NULL); /* hint address */

105

106 if (pmaddr == NULL) {

107 fprintf(stderr, "MapViewOfFileEx, gle:

0x%08x",

108 GetLastError());

109 exit(1);

110 }

111

112 /* On windows must leave the file handle(s) open

while mmaped */

113

CHAPTER 3

10

114 /* store a string to the beginning of the file

*/

115 strcpy(pmaddr, "This is new data written to the

file");

116

117 /* Flush this page with length rounded up to 4k

page size */

118 if (FlushViewOfFile(pmaddr, 4096) == FALSE) {

119 fprintf(stderr, "FlushViewOfFile, gle:

0x%08x",

120 GetLastError());

121 exit(1);

122 }

123

124 /* Now flush the complete file to backing storage

*/

125 if (FlushFileBuffers(fh) == FALSE) {

126 fprintf(stderr, "FlushFileBuffers, gle:

0x%08x",

127 GetLastError());

128 exit(1);

129 }

130

131 /* Explicitly unmap before closing the file */

132 if (UnmapViewOfFile(pmaddr) == FALSE) {

133 fprintf(stderr, "UnmapViewOfFile, gle:

0x%08x",

134 GetLastError());

135 exit(1);

136 }

137

138 CloseHandle(fmh);

139 CloseHandle(fh);

140

141 printf("Done.\n");

142 exit(0);

143 }

 Lines 45-73: As in the previous example, we take the filename

passed through argv and open the file.

 Line 77: We retrieve the file size to use later when memory

mapping.

CHAPTER 3

11

 Line 85: Here we take the first step to memory mapping a file by

creating the file mapping. This step does not yet map the file into

our application’s memory space.

 Line 99: This step maps the file into our memory space.

 Line 115: As in the previous example, we write a string to the

beginning of the file, accessing the file like memory.

 Line 118: We flush the modified memory page to the backing

storage.

 Line 125: We flush the full file to backing storage, including any

additional file metadata maintained by Windows.

 Line 132: We un-map the file and then close the file handles in

lines 124 and 125.

Figure 3-4 shows what happens under the covers inside the operating

system. When an application calls mmap() on Linux or CreateFileMapping() on

Windows, the operating system allocates memory from its memory page cache,

maps that memory into the application’s address space, and creates the association

with the file through a storage device driver.

Figure 3-4 Memory mapped files with storage

CHAPTER 3

12

As the application reads pages of the file in memory, if those pages are not

present in memory, a page fault exception is raised to the operating system which

will then read that page into main memory through storage I/O operations. The

operating system also tracks writes to those memory pages and schedules

asynchronous I/O operations to write the modifications back to the primary copy of

the file on the storage device. Alternatively, if the application wants to ensure

updates are written back to storage before continuing as we did in our code example,

the msync system call on Linux or FlushViewOfFile on Windows executes the

flush to disk. This may cause the operating system to suspend the program until the

write finishes, similar to the file write operation described earlier.

This description of memory mapped files using storage highlights some of the

disadvantages. Firstly, a portion of the limited kernel memory page cache in main

memory is used to store a copy of the file. Secondly, for files that are larger than can

fit in memory, the application may experience unpredictable and variable pauses as

the operating system moves pages between memory and storage through I/O

operations. Thirdly, updates to the in-memory copy are not persistent until written

back to storage so can be lost in the event of a failure.

Persistent Memory Direct Access (DAX)

The persistent memory direct access feature in operating systems, referred to as

DAX in Linux and Windows, uses the memory mapped file interfaces described in

the previous section, but takes advantage of persistent memory’s native ability to

both store data and to be used as memory. Persistent memory can be natively

mapped as application memory, eliminating the need for the operating system to

cache files in volatile main memory.

To use DAX, the system administrator creates a filesystem on the persistent

memory module and mounts that filesystem into the operating system’s filesystem

tree. For Linux users, persistent memory devices will appear as /dev/pmem*

device special files. To show the persistent memory physical devices, system

administrators can use the ndctl and ipmctl utilities shown in Listing 3-3 and 3-4.

CHAPTER 3

13

Listing 3-3 Displaying persistent memory physical devices and regions on Linux

ipmctl show -dimm

 DimmID | Capacity | HealthState | ActionRequired | LockState | FWVersion

==

 0x0001 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x0011 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x0021 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x0101 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x0111 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x0121 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x1001 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x1011 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x1021 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x1101 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x1111 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

 0x1121 | 252.4 GiB | Healthy | 0 | Disabled | 01.02.00.5367

ipmctl show -region

 SocketID | ISetID | PersistentMemoryType | Capacity | FreeCapacity | HealthState

==

 0x0000 | 0x2d3c7f48f4e22ccc | AppDirect | 1512.0 GiB | 0.0 GiB | Healthy

 0x0001 | 0xdd387f488ce42ccc | AppDirect | 1512.0 GiB | 1512.0 GiB | Healthy

Listing 3-4 Displaying persistent memory physical devices, regions, and namespaces on Linux

ndctl list -DRN

{

 "dimms":[

 {

 "dev":"nmem1",

 "id":"8089-a2-1837-00000bb3",

 "handle":17,

 "phys_id":44,

 "security":"disabled"

 },

 {

 "dev":"nmem3",

 "id":"8089-a2-1837-00000b5e",

 "handle":257,

 "phys_id":54,

 "security":"disabled"

 },

 […snip…]

 {

 "dev":"nmem8",

 "id":"8089-a2-1837-00001114",

 "handle":4129,

CHAPTER 3

14

 "phys_id":76,

 "security":"disabled"

 }

],

 "regions":[

 {

 "dev":"region1",

 "size":1623497637888,

 "available_size":1623497637888,

 "max_available_extent":1623497637888,

 "type":"pmem",

 "iset_id":-2506113243053544244,

 "mappings":[

 {

 "dimm":"nmem11",

 "offset":268435456,

 "length":270582939648,

 "position":5

 },

 {

 "dimm":"nmem10",

 "offset":268435456,

 "length":270582939648,

 "position":1

 },

 {

 "dimm":"nmem9",

 "offset":268435456,

 "length":270582939648,

 "position":3

 },

 {

 "dimm":"nmem8",

 "offset":268435456,

 "length":270582939648,

 "position":2

 },

 {

 "dimm":"nmem7",

 "offset":268435456,

 "length":270582939648,

 "position":4

 },

 {

 "dimm":"nmem6",

 "offset":268435456,

 "length":270582939648,

CHAPTER 3

15

 "position":0

 }

],

 "persistence_domain":"memory_controller"

 },

 {

 "dev":"region0",

 "size":1623497637888,

 "available_size":0,

 "max_available_extent":0,

 "type":"pmem",

 "iset_id":3259620181632232652,

 "mappings":[

 {

 "dimm":"nmem5",

 "offset":268435456,

 "length":270582939648,

 "position":5

 },

 {

 "dimm":"nmem4",

 "offset":268435456,

 "length":270582939648,

 "position":1

 },

 {

 "dimm":"nmem3",

 "offset":268435456,

 "length":270582939648,

 "position":3

 },

 {

 "dimm":"nmem2",

 "offset":268435456,

 "length":270582939648,

 "position":2

 },

 {

 "dimm":"nmem1",

 "offset":268435456,

 "length":270582939648,

 "position":4

 },

 {

 "dimm":"nmem0",

 "offset":268435456,

 "length":270582939648,

CHAPTER 3

16

 "position":0

 }

],

 "persistence_domain":"memory_controller",

 "namespaces":[

 {

 "dev":"namespace0.0",

 "mode":"fsdax",

 "map":"dev",

 "size":1598128390144,

 "uuid":"06b8536d-4713-487d-891d-795956d94cc9",

 "sector_size":512,

 "align":2097152,

 "blockdev":"pmem0"

 }

]

 }

]

}

When a filesystem is created and mounted using /dev/pmem* devices, they

can be identified using the df command as shown in Listing 3-5.

Listing 3-5 Locating persistent memory on Linux

$ df -h /dev/pmem*

Filesystem Size Used Avail Use% Mounted on

/dev/pmem0 1.5T 77M 1.4T 1% /mnt/pmemfs0

/dev/pmem1 1.5T 77M 1.4T 1% /mnt/pmemfs1

Windows developers will use PowerShellCmdlets as shown in figure 3-6. In

either case, assuming the administrator has granted you rights to create files, you

can create one or more files in the persistent memory then memory map those files

to your application using the same method as shown in code Listings 3-1 and 3-2.

Listing 3-6 Locating persistent memory on Windows

PS C:\Users\Administrator> Get-PmemDisk

Number Size Health Atomicity Removable Physical device IDs Unsafe shutdowns

------ ---- ------ --------- --------- ------------------- ----------------

2 249 GB Healthy None True {1} 36

CHAPTER 3

17

PS C:\Users\Administrator> Get-Disk 2 | Get-Partition

PartitionNumber DriveLetter Offset Size Type

--------------- ----------- ------ ---- ----

1 24576 15.98 MB Reserved

2 D 16777216 248.98 GB Basic

Managing persistent memory as files have several benefits. We can leverage

the rich features of leading filesystems for organizing, managing, naming, and

limiting access for users persistent memory files and directories. We can apply the

familiar file system permissions, and access rights management for protecting data

stored in persistent memory and for sharing persistent memory between multiple

users. System administrators can use existing backup tools that rely on file system

revision history tracking. Finally, application developers can build on existing

memory mapping APIs as described above and applications that currently use

memory mapped files, can use direct persistent memory without modifications.

Once a file backed by persistent memory is created and opened, an

application still calls mmap or MapViewOfFile to get a pointer to the persistent

media. The difference, as shown in Figure 3-5, is the persistent memory aware file

system recognizes that the file is on persistent memory and programs the memory

management unit (MMU) in the CPU to map the persistent memory directly into the

application’s address space. No copy in kernel memory is required, and no

synchronizing to storage through I/O operations is required. The application can

use the pointer returned by mmap or MapViewOfFile to operate on its data in-place

directly in the persistent memory. Since no kernel I/O operations are required, and

since the full file is mapped into the application’s memory, it can manipulate large

collections of data objects with higher and more consistent performance as

compared to files on I/O-accessed storage.

CHAPTER 3

18

Figure 3-5 Direct Access (DAX) I/O and Standard File API I/O paths through the Kernel

Listing 3-4 shows a C source code example that uses DAX to write a string

directly into persistent memory. In this example, we use one of the persistent

memory API libraries included in Linux and Windows called libpmem. We describe

these libraries in more detail in later chapters but will describe the use of two of the

functions available in libpmem in the steps below. The APIs in libpmem are

common across Linux and Windows and abstract the differences between underlying

operating system APIs so this sample code is portable across both operating system

platforms.

32 #include <sys/types.h>

33 #include <sys/stat.h>

34 #include <fcntl.h>

35 #include <stdio.h>

36 #include <errno.h>

37 #include <stdlib.h>

38 #ifndef _WIN32

CHAPTER 3

19

39 #include <unistd.h>

40 #else

41 #include <io.h>

42 #endif

43 #include <string.h>

44 #include <libpmem.h>

45

46 /* using 4k of pmem for this example */

47 #define PMEM_LEN 4096

48

49 int

50 main(int argc, char *argv[])

51 {

52 char *pmemaddr;

53 size_t mapped_len;

54 int is_pmem;

55

56 if (argc != 2) {

57 fprintf(stderr, "Usage: %s filename\n",

argv[0]);

58 exit(1);

59 }

60

61 /* Create a pmem file and memory map it. */

62 if ((pmemaddr = pmem_map_file(argv[1], PMEM_LEN,

PMEM_FILE_CREATE,

63 0666, &mapped_len,

&is_pmem)) == NULL) {

64 perror("pmem_map_file");

65 exit(1);

66 }

67

68 /* Store a string to the persistent memory. */

69 char s[] = "This is new data written to the file";

70 strcpy(pmemaddr, s);

71

72 /* Flush our string to persistence. */

73 if (is_pmem)

74 pmem_persist(pmemaddr, sizeof(s));

75 else

76 pmem_msync(pmemaddr, sizeof(s));

77

CHAPTER 3

20

78 /* Delete the mappings. */

79 pmem_unmap(pmemaddr, mapped_len);

80

81 printf("Done.\n");

82 exit(0);

83 }

Listing 3-4 DAX Programming Example

 Line 38: Here we handle differences between Linux and Windows

include files.

 Line 44: We include the header file for the libpmem API used in

this example.

 Line 49-59: We take the pathname argument like our previous

examples.

 Line 62: The pmem_map_file function in libpmem handles

opening the file and mapping it into our address space on both

Windows and Linux. Since the file resides on persistent memory,

the operating system programs the hardware memory

management unit in the CPU to map the persistent memory region

into our application’s virtual address space. Pointer pmemaddr is

set to the beginning of that region. The pmem_map_file function

can also be used for memory-mapping disk-based files through

kernel main memory as well as directly mapping persistent

memory so is_pmem is set to TRUE if the file resides on

persistent memory, and FALSE if mapped through main memory.

 Line 70: We write a string into persistent memory.

 Line 73: If the file resides on persistent memory, as in this

example, the pmem_persist function uses the user-space

machine instructions described in chapter 2 to ensure our string is

flushed through CPU cache levels to the powerfail-safe domain

and ultimately to persistent memory. If our file resided on disk-

based storage, Linux mmap or Windows FlushViewOfFile

would be used to flushed to storage. Note that we can pass small

sizes here (the size of the string written is used in this example)

instead of requiring flushes at page granularity when using

msync() or FlushViewOfFile().

 Line 79: Finally, we unmap the persistent memory region.

CHAPTER 3

21

Summary

Figure 3-6 shows the complete view of the operating system support described in

this chapter. As we discussed, an application can use persistent memory as a fast

SSD, more directly through a persistent memory aware file system, or mapped

directly into the application’s memory space with the DAX option. DAX leverages

operating system services for memory mapped files but takes advantage of the

server hardware’s ability to map persistent memory directly into the application’s

address space, avoiding the need to move data between main memory and storage.

In the next few chapters, we will describe considerations for working with data

directly in persistent memory and then discuss the APIs for simplifying development.

Figure 3-6 Persistent Memory Programming Options

