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Operating System 
Support for Persistent 
Memory 

In the previous chapter, we described how persistent memory is incorporated into the 

computer hardware architecture.  In this chapter, we describe how operating systems 

manage persistent memory as a platform resource and describe the options they 

provide for applications to use persistent memory.   We start by comparing memory 

and storage in popular computer architectures and then describe how operating 

systems have been extended for persistent memory. 

Operating System Support for Memory and 

Storage 

Figure 3-1 shows a simplified view of how operating systems manage storage and 

volatile memory.   As shown, the volatile main memory is attached directly to the 

CPU through a memory bus.  The operating system manages the mapping of 

memory regions directly into the application’s visible memory address space.  

Storage, which usually operates at speeds much slower than the CPU, is attached 

through an input/output (I/O) controller.   The operating system handles access to the 

storage through device driver modules loaded into the operating systems I/O 

subsystem.  
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The combination of direct application access to volatile memory combined 

with the operating system I/O access to storage devices supports the most common 

application programming model taught in introductory programming classes.  In this 

model, developers allocate data structures and operate on them at byte granularity in 

memory.  When the application wants to save data, it uses standard file API system 

calls to write the data to an open file.  Within the operating system, the file system 

executes this write by performing one or more I/O operations to the storage device.  

Because these I/O operations are usually much slower than CPU speeds, it is typical 

for the operating system to suspend the application until the I/O completes. 

Since persistent memory can be accessed directly by applications and can 

persist data in-place, it allows operating systems to support a direct programming 

model. Fortunately for application developers, while the first generation of persistent 

memory was under development, Microsoft Windows and Linux designers 

collaborated in the Storage and Networking Industry Association (SNIA) to define this 

new programming model.  This is described in the SNIA NVM Programming Model  

Specification (https://www.snia.org/tech_activities/standards/curr_standards/npm).   

Figure 3-1: Storage and volatile memory in the operating system 

https://www.snia.org/tech_activities/standards/curr_standards/npm
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Both Linux and Windows comply with this specification.  As a result, the 

operating system support described in this chapter is common to at least the 

Windows and Linux operating systems.   The programming model specification 

describes multiple ways that applications can use persistent memory along with the 

operating system extensions to support those programming options and are 

described in the remainder of this chapter. 

Persistent Memory as Block Storage 

The first operating system extension for persistent memory is the ability to detect the 

existence of persistent memory modules and load a device driver into the operating 

system’s I/O subsystem as shown in Figure 3-2.  This driver is called an NVDIMM 

driver and serves two important functions.   First, it provides an interface for 

management and sysadmin utilities to configure and monitor the state of the 

persistent memory hardware and is similar to the functionality provided by storage 

device drivers.    

 

 

 

Figure 3-2 Persistent Memory as Block Storage 
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The NVDIMM driver presents persistent memory to applications and 

operating system modules as a fast block storage device.  This means applications, 

file systems, volume managers and other storage middleware layers can use 

persistent memory the same way they use storage today, without modifications.   

Figure 3-2 also shows a driver that can be optionally configured into the I/O 

subsystem called the Block Translation Table (BTT) driver.   Storage devices such 

as HDDs and SSDs present a native block size with 512 and 4k bytes as two 

common native block sizes.  Some storage devices, especially server-class storage, 

provide a guarantee that when a power failure or server failure occurs if a block write 

is in-flight, either all or none of the block will be written.  The BTT driver is included to 

provide the same guarantee when using persistent memory as a block storage 

device.  Most applications and files systems depend on this atomic write guarantee 

and should be configured to use the BTT driver although operating systems also 

provide the option to bypass the BTT driver for applications that implement their own 

protection against partial block updates. 

Persistent Memory Aware File Systems 

The next extension to the operating system is to make the file system aware of and 

optimized for persistent memory.  File systems that have been extended for 

persistent memory include Linux ext4 and XFS, and Windows NTFS.  As shown in 

Figure 3-3, these file systems can use the block driver in the I/O subsystem as 

described in the previous section or can bypass the I/O subsystem to directly use 

persistent memory as byte-addressable load/store memory as the fastest and 

shortest path to data stored in persistent memory.   In addition to eliminating the I/O 

operation, this path enables small data writes to be executed faster than traditional 

block storage devices which require the file system to read the device’s native block 

size, modify the block, then write the full block back to the device. 
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Figure 3-3 Persistent Memory Aware File System 

These persistent memory aware file systems continue to present the familiar, 

standard file APIs to applications including the open, close, read and, write 

system calls.  This allows applications to continue using this familiar file system APIs 

while benefiting from the higher performance of persistent memory. 

Memory Mapped Files 

Before describing the next operating system option for using persistent memory, we 

review memory mapped files in Linux and Windows.  When memory mapping a file, 

the operating system allocates a portion of main memory, maps that memory into the 

application’s virtual address space, and maintains a correlation between the portion 

of the file in memory, and the on-disk copy of the file.  This allows an application to 

access and modify file data as byte-addressable in-memory data structures.  This 

has the potential to improve performance and simplify application development, 

especially for applications that make frequent, small updates to file data. 

Applications memory map a file by first opening the file, then passing the 

resulting file handle as a parameter to the mmap() system call in Linux or to 

MapViewOfFile() in Windows.  Both return a pointer to the in-memory copy of a 
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portion of the file.  Listing 3-1 shows an example of Linux C code that memory maps 

a file, write data into the file by accessing it like memory, and then uses the msync 

system call to perform the I/O operation to write the modified data to the file on the 

storage device.  Listing 3-2 shows the equivalent operations on Windows. We will 

walk through and highlight the key steps in both of these code samples.  

Listing 3-1  Memory mapped file on Linux Example 

50 #include <err.h> 

51 #include <fcntl.h> 

52 #include <stdio.h> 

53 #include <stdlib.h> 

54 #include <string.h> 

55 #include <sys/mman.h> 

56 #include <sys/stat.h> 

57 #include <sys/types.h> 

58 #include <unistd.h> 

59  

60 int 

61 main(int argc, char *argv[]) 

62 { 

63 int fd; 

64 struct stat stbuf; 

65 char *pmaddr; 

66 

67 if (argc != 2) { 

68  fprintf(stderr, "Usage: %s filename\n", argv[0]); 

69  exit(1); 

70 } 

71 

72 if ((fd = open(argv[1], O_RDWR)) < 0) 

73  err(1, "open %s", argv[1]); 

74 

75 if (fstat(fd, &stbuf) < 0) 

76  err(1, "stat %s", argv[1]); 

77 

78 /* 

79  * Map the file into our address space for read & write. 

80  * Use MAP_SHARED so stores are visible to other 

programs. 

81  */ 
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82 if ((pmaddr = mmap(NULL, stbuf.st_size, 

83    PROT_READ|PROT_WRITE, 

84    MAP_SHARED, fd, 0)) == MAP_FAILED) 

85  err(1, "mmap %s", argv[1]); 

86  

87 /* don't need the fd anymore, the mapping stays around */ 

88 close(fd); 

89 

90 /* store a string to the File */ 

91 strcpy(pmaddr, "This is new data written to the file"); 

92 

93 /* 

94  * Simplest way to flush is to call msync(). The length 

95  * needs to be rounded up to a 4k page. 

96  */ 

97 if (msync((void *)pmaddr, 4096, MS_SYNC) < 0) 

98  err(1, "msync"); 

99 

100 printf("Done.\n"); 

101 exit(0); 

102 } 

 Lines 67-73:  We verify the caller passed a file name that can be 

opened.  The open call will create the file if it does not already 

exist. 

 Line 75:  Here we retrieve the file statistics in order to use the 

length when we memory map the file. 

 Line 82:  Here we map the file into the application’s address space 

to allow our program to access the contents as if in memory.  In 

the second parameter, we pass the length of the file, requesting 

Linux to initialize memory with the full file.  We also map the file 

with both READ and WRITE access and also as SHARED 

allowing other processes to map the same file. 

 Line 88:  We retire the file descriptor which is no longer needed 

once a file is mapped. 

 Line 91:  Here we write data into the file by accessing it like 

memory through the pointer returned by mmap. 

 Line 97:  Here we explicitly flush the newly-written string to the 

backing storage device. 
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Listing 3-2 shows an example of C code that memory maps a file, writes data 

into the file, then uses the FlushViewOfFile() and FlushFileBuffers() system calls to 

flush the modified data to the file on the storage device.   

Listing 3-2  Memory mapped file on Windows Example 

45  #include <fcntl.h> 

46  #include <stdio.h> 

47  #include <stdlib.h> 

48  #include <string.h> 

49  #include <sys/stat.h> 

50  #include <sys/types.h> 

51  #include <Windows.h> 

52   

53  int 

54  main(int argc, char *argv[]) 

55  { 

56          if (argc != 2) { 

57                  fprintf(stderr, "Usage: %s filename\n", 

argv[0]); 

58                  exit(1); 

59          } 

60   

61          /* Create the file or open if the file already 

exists */ 

62          HANDLE fh = CreateFile(argv[1], 

63                  GENERIC_READ|GENERIC_WRITE, 

64                  0, 

65                  NULL, 

66                  OPEN_EXISTING, 

67                  FILE_ATTRIBUTE_NORMAL, 

68                  NULL); 

69   

70          if (fh == INVALID_HANDLE_VALUE) { 

71                  fprintf(stderr, "CreateFile, gle: 0x%08x", 

72                          GetLastError()); 

73                  exit(1); 

74          } 

75   

76          /* Get the file length for use when memory mapping 

later */ 

77          DWORD filelen = GetFileSize(fh, NULL); 
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78          if (filelen == 0) { 

79                  fprintf(stderr, "GetFileSize, gle: 

0x%08x", 

80                          GetLastError()); 

81                  exit(1); 

82          } 

83   

84          /* Create a file mapping object */ 

85          HANDLE fmh = CreateFileMapping(fh, 

86                  NULL, /* security attributes */ 

87                  PAGE_READWRITE, 

88                  0, 

89                  0, 

90                  NULL); 

91   

92          if (fmh == NULL) { 

93                  fprintf(stderr, "CreateFileMapping, gle: 

0x%08x", 

94                          GetLastError()); 

95                  exit(1); 

96          } 

97   

98          /* Map into our address space and get a pointer to 

the beginning */ 

99          char *pmaddr = (char *)MapViewOfFileEx(fmh, 

100                  FILE_MAP_ALL_ACCESS, 

101                  0, 

102                  0, 

103                  filelen, 

104                  NULL); /* hint address */ 

105   

106          if (pmaddr == NULL) { 

107                  fprintf(stderr, "MapViewOfFileEx, gle: 

0x%08x", 

108                          GetLastError()); 

109                  exit(1); 

110          } 

111   

112          /* On windows must leave the file handle(s) open 

while mmaped */ 

113   
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114          /* store a string to the beginning of the file  

*/ 

115          strcpy(pmaddr, "This is new data written to the 

file"); 

116   

117          /* Flush this page with length rounded up to 4k 

page size */ 

118          if (FlushViewOfFile(pmaddr, 4096) == FALSE) { 

119                  fprintf(stderr, "FlushViewOfFile, gle: 

0x%08x", 

120                          GetLastError()); 

121                  exit(1); 

122          } 

123   

124          /* Now flush the complete file to backing storage 

*/ 

125          if (FlushFileBuffers(fh) == FALSE) { 

126                  fprintf(stderr, "FlushFileBuffers, gle: 

0x%08x", 

127                          GetLastError()); 

128                  exit(1); 

129          } 

130   

131          /* Explicitly unmap before closing the file */ 

132          if (UnmapViewOfFile(pmaddr) == FALSE) { 

133                  fprintf(stderr, "UnmapViewOfFile, gle: 

0x%08x", 

134                          GetLastError()); 

135                  exit(1); 

136          } 

137   

138          CloseHandle(fmh); 

139          CloseHandle(fh); 

140   

141          printf("Done.\n"); 

142          exit(0); 

143  } 

 Lines 45-73:  As in the previous example, we take the filename 

passed through argv and open the file. 

 Line 77:  We retrieve the file size to use later when memory 

mapping. 
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 Line 85:  Here we take the first step to memory mapping a file by 

creating the file mapping.  This step does not yet map the file into 

our application’s memory space. 

 Line 99:  This step maps the file into our memory space. 

 Line 115:  As in the previous example, we write a string to the 

beginning of the file, accessing the file like memory. 

 Line 118:  We flush the modified memory page to the backing 

storage. 

 Line 125:  We flush the full file to backing storage, including any 

additional file metadata maintained by Windows. 

 Line 132:  We un-map the file and then close the file handles in 

lines 124 and 125.  

 

Figure 3-4 shows what happens under the covers inside the operating 

system.  When an application calls mmap() on Linux or CreateFileMapping() on 

Windows, the operating system allocates memory from its memory page cache, 

maps that memory into the application’s address space, and creates the association 

with the file through a storage device driver.   

Figure 3-4  Memory mapped files with storage 
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As the application reads pages of the file in memory, if those pages are not 

present in memory, a page fault exception is raised to the operating system which 

will then read that page into main memory through storage I/O operations.  The 

operating system also tracks writes to those memory pages and schedules 

asynchronous I/O operations to write the modifications back to the primary copy of 

the file on the storage device.  Alternatively, if the application wants to ensure 

updates are written back to storage before continuing as we did in our code example, 

the msync system call on Linux or FlushViewOfFile on Windows executes the 

flush to disk.  This may cause the operating system to suspend the program until the 

write finishes, similar to the file write operation described earlier. 

This description of memory mapped files using storage highlights some of the 

disadvantages.  Firstly, a portion of the limited kernel memory page cache in main 

memory is used to store a copy of the file.  Secondly, for files that are larger than can 

fit in memory, the application may experience unpredictable and variable pauses as 

the operating system moves pages between memory and storage through I/O 

operations.  Thirdly, updates to the in-memory copy are not persistent until written 

back to storage so can be lost in the event of a failure. 

Persistent Memory Direct Access (DAX) 

The persistent memory direct access feature in operating systems, referred to as 

DAX in Linux and Windows, uses the memory mapped file interfaces described in 

the previous section, but takes advantage of persistent memory’s native ability to 

both store data and to be used as memory.    Persistent memory can be natively 

mapped as application memory, eliminating the need for the operating system to 

cache files in volatile main memory. 

To use DAX, the system administrator creates a filesystem on the persistent 

memory module and mounts that filesystem into the operating system’s filesystem 

tree.  For Linux users, persistent memory devices will appear as /dev/pmem* 

device special files.  To show the persistent memory physical devices, system 

administrators can use the ndctl and ipmctl utilities shown in Listing 3-3 and 3-4. 
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Listing 3-3 Displaying  persistent memory physical devices and regions on Linux 

# ipmctl show -dimm 

 

 DimmID | Capacity  | HealthState | ActionRequired | LockState | FWVersion 

============================================================================== 

 0x0001 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x0011 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x0021 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x0101 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x0111 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x0121 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x1001 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x1011 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x1021 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x1101 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x1111 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 0x1121 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367 

 

# ipmctl show -region 

 

 SocketID | ISetID             | PersistentMemoryType | Capacity   | FreeCapacity | HealthState 

================================================================================================ 

 0x0000   | 0x2d3c7f48f4e22ccc | AppDirect            | 1512.0 GiB | 0.0 GiB      | Healthy 

 0x0001   | 0xdd387f488ce42ccc | AppDirect            | 1512.0 GiB | 1512.0 GiB   | Healthy 

Listing 3-4 Displaying persistent memory physical devices, regions, and namespaces on Linux 

 

# ndctl list -DRN 

{ 

  "dimms":[ 

    { 

      "dev":"nmem1", 

      "id":"8089-a2-1837-00000bb3", 

      "handle":17, 

      "phys_id":44, 

      "security":"disabled" 

    }, 

    { 

      "dev":"nmem3", 

      "id":"8089-a2-1837-00000b5e", 

      "handle":257, 

      "phys_id":54, 

      "security":"disabled" 

    }, 

    […snip…] 

    { 

      "dev":"nmem8", 

      "id":"8089-a2-1837-00001114", 

      "handle":4129, 
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      "phys_id":76, 

      "security":"disabled" 

    } 

  ], 

  "regions":[ 

    { 

      "dev":"region1", 

      "size":1623497637888, 

      "available_size":1623497637888, 

      "max_available_extent":1623497637888, 

      "type":"pmem", 

      "iset_id":-2506113243053544244, 

      "mappings":[ 

        { 

          "dimm":"nmem11", 

          "offset":268435456, 

          "length":270582939648, 

          "position":5 

        }, 

        { 

          "dimm":"nmem10", 

          "offset":268435456, 

          "length":270582939648, 

          "position":1 

        }, 

        { 

          "dimm":"nmem9", 

          "offset":268435456, 

          "length":270582939648, 

          "position":3 

        }, 

        { 

          "dimm":"nmem8", 

          "offset":268435456, 

          "length":270582939648, 

          "position":2 

        }, 

        { 

          "dimm":"nmem7", 

          "offset":268435456, 

          "length":270582939648, 

          "position":4 

        }, 

        { 

          "dimm":"nmem6", 

          "offset":268435456, 

          "length":270582939648, 
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          "position":0 

        } 

      ], 

      "persistence_domain":"memory_controller" 

    }, 

    { 

      "dev":"region0", 

      "size":1623497637888, 

      "available_size":0, 

      "max_available_extent":0, 

      "type":"pmem", 

      "iset_id":3259620181632232652, 

      "mappings":[ 

        { 

          "dimm":"nmem5", 

          "offset":268435456, 

          "length":270582939648, 

          "position":5 

        }, 

        { 

          "dimm":"nmem4", 

          "offset":268435456, 

          "length":270582939648, 

          "position":1 

        }, 

        { 

          "dimm":"nmem3", 

          "offset":268435456, 

          "length":270582939648, 

          "position":3 

        }, 

        { 

          "dimm":"nmem2", 

          "offset":268435456, 

          "length":270582939648, 

          "position":2 

        }, 

        { 

          "dimm":"nmem1", 

          "offset":268435456, 

          "length":270582939648, 

          "position":4 

        }, 

        { 

          "dimm":"nmem0", 

          "offset":268435456, 

          "length":270582939648, 
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          "position":0 

        } 

      ], 

      "persistence_domain":"memory_controller", 

      "namespaces":[ 

        { 

          "dev":"namespace0.0", 

          "mode":"fsdax", 

          "map":"dev", 

          "size":1598128390144, 

          "uuid":"06b8536d-4713-487d-891d-795956d94cc9", 

          "sector_size":512, 

          "align":2097152, 

          "blockdev":"pmem0" 

        } 

      ] 

    } 

  ] 

} 

When a filesystem is created and mounted using /dev/pmem* devices, they 

can be identified using the df command as shown in Listing 3-5.    

Listing 3-5 Locating persistent memory on Linux 

$ df -h /dev/pmem* 

Filesystem      Size  Used Avail Use% Mounted on 

/dev/pmem0      1.5T   77M  1.4T   1% /mnt/pmemfs0 

/dev/pmem1      1.5T   77M  1.4T   1% /mnt/pmemfs1 

Windows developers will use PowerShellCmdlets as shown in figure 3-6.    In 

either case, assuming the administrator has granted you rights to create files, you 

can create one or more files in the persistent memory then memory map those files 

to your application using the same method as shown in code Listings 3-1 and 3-2. 
 

Listing 3-6 Locating persistent memory on Windows 

PS C:\Users\Administrator> Get-PmemDisk 

 

Number Size   Health  Atomicity Removable Physical device IDs Unsafe shutdowns 

------ ----   ------  --------- --------- ------------------- ---------------- 

2      249 GB Healthy None      True      {1}                 36 
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PS C:\Users\Administrator> Get-Disk 2 | Get-Partition 

 

PartitionNumber  DriveLetter Offset   Size         Type                                 

---------------  ----------- ------   ----         ----                                                                                                

1                            24576    15.98 MB     Reserved                                                                                  

2                D           16777216 248.98 GB    Basic                                     

 

Managing persistent memory as files have several benefits.  We can leverage 

the rich features of leading filesystems for organizing, managing, naming, and 

limiting access for users persistent memory files and directories.  We can apply the 

familiar file system permissions, and access rights management for protecting data 

stored in persistent memory and for sharing persistent memory between multiple 

users.  System administrators can use existing backup tools that rely on file system 

revision history tracking.  Finally, application developers can build on existing 

memory mapping APIs as described above and applications that currently use 

memory mapped files, can use direct persistent memory without modifications. 

Once a file backed by persistent memory is created and opened, an 

application still calls mmap or MapViewOfFile to get a pointer to the persistent 

media.  The difference, as shown in Figure 3-5, is the persistent memory aware file 

system recognizes that the file is on persistent memory and programs the memory 

management unit (MMU) in the CPU to map the persistent memory directly into the 

application’s address space.  No copy in kernel memory is required, and no 

synchronizing to storage through I/O operations is required.   The application can 

use the pointer returned by mmap or MapViewOfFile to operate on its data in-place 

directly in the persistent memory.  Since no kernel I/O operations are required, and 

since the full file is mapped into the application’s memory, it can manipulate large 

collections of data objects with higher and more consistent performance as 

compared to files on I/O-accessed storage. 
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Figure 3-5 Direct Access (DAX) I/O and Standard File API I/O paths through the Kernel 

Listing 3-4 shows a C source code example that uses DAX to write a string 

directly into persistent memory.  In this example, we use one of the persistent 

memory API libraries included in Linux and Windows called libpmem.  We describe 

these libraries in more detail in later chapters but will describe the use of two of the 

functions available in libpmem in the steps below.   The APIs in libpmem are 

common across Linux and Windows and abstract the differences between underlying 

operating system APIs so this sample code is portable across both operating system 

platforms. 

 

32  #include <sys/types.h> 

33  #include <sys/stat.h> 

34  #include <fcntl.h> 

35  #include <stdio.h> 

36  #include <errno.h> 

37  #include <stdlib.h> 

38  #ifndef _WIN32 
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39  #include <unistd.h> 

40  #else 

41  #include <io.h> 

42  #endif 

43  #include <string.h> 

44  #include <libpmem.h> 

45   

46  /* using 4k of pmem for this example */ 

47  #define PMEM_LEN 4096 

48   

49  int 

50  main(int argc, char *argv[]) 

51  { 

52          char *pmemaddr; 

53          size_t mapped_len; 

54          int is_pmem; 

55   

56          if (argc != 2) { 

57                  fprintf(stderr, "Usage: %s filename\n", 

argv[0]); 

58                  exit(1); 

59          } 

60   

61          /* Create a pmem file and memory map it. */ 

62          if ((pmemaddr = pmem_map_file(argv[1], PMEM_LEN, 

PMEM_FILE_CREATE, 

63                                  0666, &mapped_len, 

&is_pmem)) == NULL) { 

64                  perror("pmem_map_file"); 

65                  exit(1); 

66          } 

67   

68          /* Store a string to the persistent memory. */ 

69          char s[] = "This is new data written to the file"; 

70          strcpy(pmemaddr, s); 

71   

72          /* Flush our string to persistence. */ 

73          if (is_pmem) 

74                  pmem_persist(pmemaddr, sizeof(s)); 

75          else 

76                  pmem_msync(pmemaddr, sizeof(s)); 

77   
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78          /* Delete the mappings. */ 

79          pmem_unmap(pmemaddr, mapped_len); 

80   

81          printf("Done.\n"); 

82          exit(0); 

83  } 

Listing 3-4 DAX Programming Example 

 Line 38:  Here we handle differences between Linux and Windows 

include files. 

 Line 44:  We include the header file for the libpmem API used in 

this example. 

 Line 49-59:  We take the pathname argument like our previous 

examples. 

 Line 62:  The pmem_map_file function in libpmem handles 

opening the file and mapping it into our address space on both 

Windows and Linux.  Since the file resides on persistent memory, 

the operating system programs the hardware memory 

management unit in the CPU to map the persistent memory region 

into our application’s virtual address space.  Pointer pmemaddr is 

set to the beginning of that region.  The pmem_map_file function 

can also be used for memory-mapping disk-based files through 

kernel main memory as well as directly mapping persistent 

memory so is_pmem  is set to TRUE if the file resides on 

persistent memory, and FALSE if mapped through main memory. 

 Line 70:  We write a string into persistent memory. 

 Line 73:  If the file resides on persistent memory, as in this 

example, the pmem_persist function uses the user-space 

machine instructions described in chapter 2 to ensure our string is 

flushed through CPU cache levels to the powerfail-safe domain 

and ultimately to persistent memory.  If our file resided on disk-

based storage, Linux mmap or Windows FlushViewOfFile 

would be used to flushed to storage.  Note that we can pass small 

sizes here (the size of the string written is used in this example) 

instead of requiring flushes at page granularity when using 

msync() or FlushViewOfFile(). 

 Line 79:  Finally, we unmap the persistent memory region. 
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Summary 

Figure 3-6 shows the complete view of the operating system support described in 

this chapter.  As we discussed, an application can use persistent memory as a fast 

SSD, more directly through a persistent memory aware file system, or mapped 

directly into the application’s memory space with the DAX option.  DAX leverages 

operating system services for memory mapped files but takes advantage of the 

server hardware’s ability to map persistent memory directly into the application’s 

address space, avoiding the need to move data between main memory and storage.  

In the next few chapters, we will describe considerations for working with data 

directly in persistent memory and then discuss the APIs for simplifying development. 

 

 

Figure 3-6 Persistent Memory Programming Options 

 


